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Abstract
Developments in the high throughput technologies have enabled the
production of an immense amount of knowledge at the multi-omics
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Zusammenfassung
Die Entwicklungen im Bereich der Hochdurchsatztechnologien haben
den Erwerb einer immensen Menge an Wissen auf der Multi-Omics-
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Ebene ermöglicht. In Anbetracht komplexer Krankheiten, die von meh-
reren Faktoren beeinflusst werden, reichen einzelne Omics-Datensätze
möglicherweise nicht aus, um diemolekularenMechanismen heteroge-
ner Krankheiten aufzudecken. Ein umfassender und systematischer
Überblick ist notwendig, umKrankheitsmerkmale ausreichend zu erklä-
ren. Die Verwendung vonMulti-Omics-Datensätzen hat zur Entwicklung
einer Vielzahl von Werkzeugen und Plattformen geführt. Modelle des
maschinellen Lernens werden in einer Vielzahl von Instrumenten einge-
setzt, um die Komplexität von Krankheiten zu erfassen und neue bio-
molekulare Signaturen und potenzielle Marker zu identifizieren. Die
grundlegenden Aspekte dieser Ansätze beruhen auf dem Training der
Modelle, um Vorhersagen und Klassifizierungen der gegebenen Daten
vorzunehmen. In dieser Übersichtsarbeit beschreiben wir die aktuellen,
auf maschinellem Lernen basierenden Ansätze und die verfügbaren
Implementierungen. Die Herausforderungen bei der Aufklärung der
Mechanismen von Krankheitsentstehung und Krankheitsverlauf und
zukünftige Entwicklungen im Bereich der Medizin werden erörtert. Auch
die Bedeutung der biologischen Interpretation von Modellergebnissen
mit entsprechendembiologischenWissenwird in dieser Übersichtsarbeit
angesprochen.
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Overview of omics data types
Collective characterization and quantification of bio-
molecules with advanced technologies have yielded the
study of fields such as genome, transcriptome, epige-
nome, metabolome, etc. Initiation of omics studies with
genomics lead to early diagnosis and target treatments
via understanding themechanismsof diseases. Genomics
driven genetic variations on phenotype are analyzed with
different methods and databases, such as the genome-
wide association study (GWAS) [1] and Gene Expression
Omnibus (GEO) [2]. Transcriptomics data publicly avail-
able in GEO and Sequence Read Archive (SRA) [3] enable
the identification of novel transcripts and expression
value of transcripts in RNA level studies. The PRoteomics
IDEntifications (PRIDE) [4] and ProteomicsDB [5] profile
mass spectrometry-based proteome changes. Further-
more, whole exome sequencing (WES) studies focus on
protein coding regions of genes to identify genetic variants
affecting the mechanism of diseases. The Genome Ag-
gregation Database (gnomAD) [6] provides whole genome
and exome sequencing data from large-scale sequencing
projects. Interactome provides molecular interaction
wiring in cells. The interactome databases such as IntAct
[7], BioGrid [8], and STRING [9] are utilized to understand
the dynamic interplay of molecules in developing novel
therapeutic strategies. For instance, cross-link with
neighboring proteins can lead to a basis for their role in
signaling pathways and identification ofmolecular targets
of specific drugs.
Genetic changes rewire the cellular networks in complex
diseases. Multi-omics data obtained from the same set
of samples can enlighten themechanisms underlying the
disease heterogeneity via detectingmore coherent signa-
tures and relevant interactions through flow of genetic
information. The publicly available repositories The Cancer
Genome Atlas (TCGA, https://cancergenome.nih.gov/),
International Cancer Genomics Consortium (ICGC,
https://icgc.org/), and Cancer Cell Line Encyclopedia
(CCLE, https://portals.broadinstitute.org/ccle) provide
several types of multi-omics data in cancer. While the
Therapeutically Applicable Research To Generate Effective
Treatments (TARGET, https://ocg.cancer.gov/programs/
target) database includes pediatric cancer-related omics
data at the biological level, the datasets of human, model
and non-model organisms can be accessed from the re-
pository Omics Discovery Index (OmicsDI, https://
www.omicsdi.org/).

Machine learning perspective in
omics data analysis
The analyses of pattern recognition and making predic-
tions based on high dimensional omics data has enabled
the machine learning models to capture the patterns ac-
curately compared to traditional mathematical models.
Supervised learningmodels are trained with labeled data
and the evaluated model is used for prediction. Unsuper-

vised learning models identify hidden patterns in un-
labeled data.
Unsupervised learningmostly covers dimension reduction
techniques and association analyses. Clustering-based
unsupervised integration method is used to identify dis-
ease and molecular subtypes and grouping of features.
The Similarity Network Fusion approach (unsupervised)
creates sample-sample similarity matrix for each omics
data type and merges the matrices [10]. Network based
unsupervised integration approaches are based on sta-
tistical models and functional interactions of features. In
the constructed network, edges represent the predicted
relationships of different signatures (nodes) such as
genes, CpGs and proteins [11].
Several approaches have been collected under the um-
brella term of supervised learning. Support vector ma-
chine algorithms (SVM) classify the features by finding
hyper-planes. Meta-analytic SVM allows multiple omics
data analysis and potential biomarker detection for inte-
gratingmultiple omics data [12]. The k-Nearest Neighbor
(kNN) algorithm based on distance-based method uses
a feature similarity approach to calculate the distance
from all features around the unknown data to predict the
class of it. The kNN Graph (kNN-G), which is widely used
in single cell analysis, detects communities or clusters
of related cells based on, for example, gene expression
data and RNA-Seq profiles [13]. Random forest algorithm
based on building random decision trees uses bootstrap
aggregation method for class prediction in classification
tasks. Random forest with the components recursive
feature elimination and permutation-based feature selec-
tion providing significance label for the selected feature
is used in omics data analysis for the diagnosis of the
diseases [14].
Most of the feature selection methods in ML perform
omics data analyses with statistics and computer science,
called as fully data driven approaches, disregarding bio-
logical domain knowledge. The domain knowledge such
as disease-gene, drug-disease associations, and protein-
protein interactions is entitled as pre-existing biological
knowledge. In the following part, we will discuss the
studies including pre-existing, fully data driven or a com-
bination of them.

Integrative approach by utilizing
pre-existing biological knowledge

Biological systems are massively complex and heteroge-
neous in nature. To understand the processes holistically
in complex organisms, the interpretation of biological
data generated in massive volume via high throughput
technologies is imperative. Integrating omics data types
and utilizing the flow of information among them have
facilitated researchers to decipher the field of medicine
and biology. Constructing a framework on multi-dimen-
sional biological data integration such as clustering and
machine learning approaches can provide a comprehen-
sive understanding of the biological mechanisms under
study.
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A cost-related limited number of samples for omics data
generation is a challenge. The phenomenon, curse of di-
mensionality, reported by Bellman et al. defines this kind
of obstacle with data in high-dimensional spaces. Dimen-
sion of the gene or biological features with functional
metrics are crucial for prediction, optimization problems
and performance results in machine learning (ML).
The assessment of gene expression to unveil the relation-
ship between genotype and phenotype has led scientists
to advance in novel methodologies such as DNA micro-
array and RNA-seq. Previous conventional studies include
standard ML and clustering procedures [15], [16], [17]
for biomarker discovery [18]. The immense amount of
biological knowledge has deflected the course of action
of studies from pure data-oriented to integration-based
approaches. The advanced tools, platforms, and software
developed by bioinformaticians have incorporated biolo-
gical knowledge into the knowledge base and improved
the performance analysis of biological processes. Some
of the organized biological knowledge in databases are
miRTarBase [19] identifying miRNA-target interactions,
Gene Ontology (GO) [20] describing the attributes of
genes, KEGG pathways providing molecular interaction
networks [21], and DisGeNET [22] targeting disease-gene
associations.
Conventional feature selection algorithms typically per-
formed in gene expression analysis rely on statistical and
machine learning models. Improving the models by inte-
grating the biological knowledge can contribute to better
performance. Current approaches used in gene-expres-
sion analyses are reviewed in [23].The authors surveyed
the clustering methods with several distance measures
such as Euclidean andManhattan distance, Kendall, and
Pearson correlations. Biological background information
from external sources [24] and statistics provided to in-
tegrative gene selection approaches are used in the
identification of informative genes. In this context, the
conducted studies aim to improve the classification per-
formance, and biological relevance of significant genes.
Gene Ontology (GO), one of the extensively used external
sources, exploits the domain knowledge and yields com-
putable gene knowledge by defining classes of gene
functions. The Gene Ontology Consortium summarized
the studies incorporating GO into statistical analysis to
reveal GO terms associated with given genes [25]. Liang
et al. presented the enrichment analysis of differentially
expressed genes by capturing significant KEGG pathways
with a modified Fisher’s exact test [12]. Another study
conducted by Wang et al. introduced the over-represen-
tation analysis of circRNAs via DisGeNET external biolo-
gical database to find their potential molecular functions
in neurodegenerative diseases [26]. CrowdGO provided
an improvement in gene functional annotation with
model-informed methods. Calculated GO term-semantic
similarities are evaluated with a machine learning model
to enhance the performance of consensus results [27].
Another study performed by Kumar et al. combined GO
and KEGG terms for comprehensive enrichment analysis
and visualized them with network topology-based ap-

proaches [28]. Contrary to the single knowledge base
approach, Perscheid et al. introduced a novel method
that integrates knowledge from curated databases and
conventional gene selection approaches. The presented
framework has achieved better classification accuracy
[29].
Yousef and others recently introduced machine learning
approaches based on grouping, scoring, and modeling
(G-S-M) for gene expression analysis with biological in-
formation. They proposed various tools that follow this
approach. For instance, maTE [30] adopts a biological
grouping approach via integrating microRNAs (miRNAs).
The GEO datasets and miRTarBase are given as input
and RF model is trained with group information to model
miRNA and mRNA regulations. The cogNet [31] serves
as ranking active subnetworks and suggesting significant
pathways by using KEGG pathways biological information.
Another proposed tool, miRcorrNet [32], identifiesmiRNA-
mRNAs regulatory modules via correlation analysis of
expression profiles. The miRNA and mRNA profiles of
target disease are retrieved from TCGA and fully data
driven biological domain analysis is performed via G-S-M
approach. The tool miRModuleNet [33] similar to
miRcorrNet also detects significantmiRNA-mRNA groups
by considering two omics datasets. The relationships of
pairs are calculated by Mutual Information which differs
from the previous tool using correlation function. The
significant groups ranking is not only based on the gene
list but also miRNA information. Another G-S-M model-
based study by Yousef et al. [34] integrates Gene Ontology
information for grouping the genes. A novel approach
PriPath [35] utilizes ranking and grouping functions to
analyze gene expression with KEGG pathways. GediNET
[36] incorporates gene information associated with dis-
eases like cancer to identify significant groups. For iden-
tification of disease-disease associations, “disease is
represented by a list of genes” strategy is used. The RF
classifier is trained, and performance results are evalu-
ated with Area Under Curve (AUC). The approaches like
GediNET enable the improvement of disease diagnosis,
prognosis, and treatment.
The idea of considering groups or clusters of genes in-
stead of individual genes in studies was pioneered by
Yousef et al., followed by more studies to improve the
tools [37], [38]. Similarly, Support Vector Machine with
Recursive Network Elimination (SVM-RNE) [39] method
integrates gene network information by using the G-S-M
model. Table 1 gives summaries of the main tools with
type of the method, disease in case study, and biological
knowledge details in this review.

Integrative approaches for multi-omics
data

Understanding the functioning of biological systems with
heterogeneous characteristics has directed scientists to
deeper analyses of omics data. As illustrated in Figure 1,
a wealth of data repositories providing valuable building
blocks and biological samples take integration ap-
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Table 1: The summaries of the main tools including type of the method, disease in case study, and biological knowledge
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Figure 1: General Multi-omics data analysis framework, integrating omics data and pre-existing biological knowledge

proaches a step forward. Tools that adopt omics data
features such as genomics, epigenomics, and metabolo-
mics are required for the interpretation of affecting
mechanisms of diseases in terms of genetic mutations,
metabolites, and pathways etc. Advanced tools provision-
ingmulti-omics data analysis can enable users to capture
possible key factors associated with the phenotype of
interest [40].
Deciphering these markers and their interplay can help
to dissect the mechanism underlying disease onset and
progression. Recently, proposed tools integrating multi-
omics data are basically categorized as Bayesian, net-
work, similarity, multivariate, supervised, semi-supervised,
or unsupervised based approaches [41].
One of these tools, MiBiOmics, enables users to identify
associations between up to 3 omics datasets. Network-
based approach depending on weighted gene correlation
network analysis is performed to exploremolecular signa-
tures and associations across layers [42]. STATegRa tools
developed by Planell et al. combined feature identification
with an unsupervised machine learning approach and
detected enriched pathways with exploratory analysis
[43]. The designed tool combines Principal Component
Analysis, non-parametric combination for linking the fea-
tures of different omics data with exploratory analysis.
Mergeomics 2.0 presented by Ding et al. incorporates
Meta marker set enrichment analysis for detection of
omics-related disease pathways and networks through

the integration of selected biomarkers. Subnetworks in-
cluding gene sets associated with the interested disease
are captured with key driver function and fed to
PharmOmics repository for drug repositioning analysis
[44].
mixOmics, a versatile multivariate method, enables the
analysis of single and integrative omics data with model-
ing features as a set approach. The tool supports prepro-
cessed multi-omics data from different platforms. The
multivariate method is applied for the identification of
molecular signatures and the distinction of disease sub-
types via un/supervised analysis [45]. The frameworks
DIABLO andMINT are developed for integration datasets.
While DIABLO enables integration of same samples from
different omics platforms, MINT integrates independent
datasets.
Another machine learning tool, miRcorrNet, developed
by Yousef et al. integrates miRNAs and gene expression
profiles via a supervised machine learning approach.
Highly scored groups, including target gene lists construc-
ted with grouping functions, are utilized for the identifica-
tion of disease-related biosignatures [32]. The following
tool, miRModuleNet, integrates a pair of omics data to
get more insight into the disease process. Generated
hierarchical group list, each of the groups includingmiRNA
and associated genes, with Mutual Information is intro-
duced into machine learning model and intergroup rela-
tionships of the groups evaluated for deciphering signifi-

5/8GMS Medizinische Informatik, Biometrie und Epidemiologie 2023, Vol. 19, ISSN 1860-9171

Unlu Yazici et al.: Integrative analyses in omics data: Machine learning ...



cant therapeutic targets affecting disease progression
[33].
DeepProg, semi-supervised hybridML tool, models patient
survival to predict new patient statuses by combining
deep learning and ML approaches. Multi-omics data
matrices and survival information is given as input and
cluster labels obtained by GaussianMixture function are
used to build models via SVM to predict the subtypes of
target disease [46].

Conclusion
In this review, we have surveyed several computational
tools that tackle the integration of biological domain
knowledge into the machine learning algorithm while in
the second part themulti-omics computational tools were
surveyed to open up new prospects for readers in the
field. Multiple layer analysis of biological information leads
to deeper understanding of biological systems. Strategies
regarding the combination of fully data-driven and pre-
existing biological knowledge in selecting features can
improve the classification performance and potential
marker selection. The tools using pre-existing knowledge
in multi-omics integration may pave the way for a better
comprehension in complex biological systems. Thus, ex-
tracting the biological knowledge from multi-omics data-
sets can be utilized to develop a novel integrative tool
addressing multi-omics applications and study complex
biological processes holistically.
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