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Abstract
Feeding cancer registries with data extracted from textual reports, while
maintaining a high level of data quality, has always been a labour-in-
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Sonja Fix1tensive task, due to the heterogeneity of the sources. The support of
Peter Klügl1this task by IT solutions is expected to accelerate and optimise this
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Discovery was tailored to extract information from free text at the cancer Tobias Hartz3
registry of the federal state of Baden-Württemberg. The following entity

Martin Richter2types were extracted from German-language pathology reports: tumour
Nils Herm-Stapelberg4localisation andmorphology, pTNM, grading, (sentinel) nodes examined

and affected, laterality and R-class. According to the entity type, several Philipp Daumke1

machine learning approaches as well as rules were used for the tumour
types breast, prostate, colorectal and skin. Whereas for the pilot site,
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F values ranged between 0.800 and 0.996, values dropped when ap-
plying the extraction pipeline to two new sites (cancer registries Rhine-
land-Palatinate and Lower Saxony), for morphology from 0.950 to 0.657 2 Klinische

Landesregisterstelle desand 0.933, and for localisation (topography) from 0.902 to 0.675 and
0.768. There was much less difference with R-class and lymph node Krebsregisters Baden-
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counts. A thorough error analysis revealed numerous issues that explain
these differences, such as different workflows between the sites, dis-
agreements between textual and coded content as well as different
handlings of missing values.
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4 Krebsregister Rheinland-
Pfalz, Mainz, GermanyZusammenfassung

Das Anreichern von Krebsregisternmit Daten ausmedizinischen Texten,
bei gleichzeitiger Sicherstellung der Datenqualität, ist aufgrund der
Heterogenität dieser Quellen mit erheblichem Aufwand verbunden. Die
Unterstützung dieser Aufgabe durch IT-Lösungen soll diesen Prozess
beschleunigen und optimieren. Zu diesem Zweck wurde das kommerzi-
elle Text-Mining-System Averbis Health Discovery darauf zugeschnitten,
Freitextinformationen für das Krebsregister Baden-Württemberg zu
verwerten. Die folgenden Entitätstypen wurden aus Befundberichten
der Pathologie extrahiert: Tumorlokalisation und -morphologie, pTNM,
Grading, untersuchte und betroffene (Sentinel-) Lymphknoten, Lateralität
und R-Klassifikation. Je nach Tumortyp wurden verschiedene Ansätze
des maschinellen Lernens sowie Regeln für die Tumorentitäten Brust,
Prostata, Kolon/Rektum und Haut verwendet. Während für den Pilot-
standort die F-Werte zwischen 0,804 und 0,996 lagen, fielen dieWerte,
wenn die Extraktionspipeline auf zwei neue Standorte (Krebsregister
Rheinland-Pfalz und Niedersachsen) angewendet wurde, für die Mor-
phologie von 0,950 auf 0,657 und 0,933 und für die Lokalisierung
(Topographie) von 0,902 auf 0,675 und 0,768. Es gab viel weniger
Unterschiede in der R-Klassifikation und bei den Lymphknoten. Eine

1/14GMS Medizinische Informatik, Biometrie und Epidemiologie 2021, Vol. 17(1), ISSN 1860-9171

Research ArticleOPEN ACCESS



gründliche Fehleranalyse verwies auf zahlreiche Probleme, die diese
Unterschiede erklären, z.B. unterschiedliche Arbeitsabläufe zwischen
den Standorten,Widersprüche zwischen Text und codiertem Inhalt sowie
unterschiedlicher Umgang mit fehlenden Werten.

Schlüsselwörter: Krebsregister, Text mining

1 Introduction

1.1 Medical registries

Medical registries are databases fed by uniform data
about a particular health condition. Their purposes en-
compass monitoring and improvement of quality of care,
clinical and epidemiological research as well as questions
related to health economics. Cancer registries constitute
the most important type of registries. According to the
European Network of Cancer Registries (ENCR), there are
two major aims of population-based cancer registries,
viz. (i) the collection of data on new cancer cases in a
defined geographic region with the purpose to investigate
the burden of specific malignant disorders, and (ii) to
provide a basis for investigating cancer aetiology and
outcome (incidence, prevalence or survival). Thus, cancer
registries are important means to assess the impact and
effectiveness of health interventions, both regarding the
provision of diagnostic and therapeutic measures, and
the implementation of preventive actions by public
policies.

1.2 Cancer registries in Germany

In Germany, cancer registries support treatment and fol-
low-up care [1]. They are divided into clinical cancer regis-
tries, which describe hospital populations, and population-
based (aka epidemiological) ones, which track cancer
cases across institutions. Cancer registries are organised
at the level of the 16 German federal states. The cases
underlying this study cover the federal states of Baden-
Württemberg (BW), Rhineland-Palatinate (RP) and Lower
Saxony (LS). Table 1 provides some basic information
about these three institutions and the population they
support.

1.2.1 Datasets

The three registries receive notifications by hospitals,
clinics and doctor’s offices. They exchange data with civil
registration offices in order to facilitate record linkage
and notifications of deaths. Their dependence onmanual
annotation of cancer notifications requires detailed
workflows and annotation guidelines. Input data are
mainly narratives, with varying degrees of embedded
codes (ICD-10, ICD-O, TNM). Some cancer centres at
university hospitals produce well-curated structured
datasets for their internal quality assurance processes,
which, as a side effect, constitute a valuable input for the
state-level registries. Target datasets vary between tu-
mour types but there is a common set of fields and value

restrictions that are equally valid for the majority of tu-
mour types: ICD-10 – in its German modification ICD-10-
GM – is used for disease coding, enhanced by ICD-O for
morphology and localisation (also known as topography)
of primary tumours and metastases. The TNM system is
used for primary tumour size (T), regional lymph nodes
(N) and distant metastases; tumour grading is expressed
by a score between G1 (low grade) and G4 (very high
grade), including Gx (undetermined grade). Datasets also
include lymph node count values, distinguishing between
examined and affected ones, for all lymph nodes and for
sentinel lymph nodes in particular. For all tumour local-
isations, laterality values are given (left, right, bilateral,
midline, not applicable). Finally, the UICC R classification
denotes absence or presence of residual tumours after
treatment.

1.2.2 Workflows

In the three centres, two parallel workflows can be distin-
guished. The first workflow starts with the submission of
structured and appropriately formatted hospital data to
the registry’s data management team, whose work is
therefore limited to minor data curation. In contrast, the
second workflow requires manual annotations. It is this
workflow where our effort is centred and for which results
are described in this paper. It starts with the reception
of narrative pathology reports (see Table 1), which have
to be read by experts, who then assign codes and values,
which requires time and considerable intellectual efforts.
As long as both sources describe the same patients,
sources are merged and “best of” registry entries are
created, according to the interpretation by the registry
experts. Evaluations have shown that quality improves
significantly when pathology report annotations are added
to the data from the hospitals [2], [3].
However, there are still a number of bottlenecks, particu-
larly regarding quality issues at the source. Legal notific-
ation requirements in Germany are recent (2009 for
hospitals, 2011 for doctor’s offices and labs, e.g. patho-
logy), and therefore software that is in current use still
lacks maturity, with some modules in beta status.
Process quality at the registries is also affected by a lack
of qualified staff and by a constantly changing environ-
ment with frequent updates of standard operating
procedures and coding guidelines. The creation of “best
of” adjudications is complex and still error-prone, due to
the lack of standardisation of textual input.
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Table 1: Synopsis of cancer registries in three German federal states

1.2.3 Challenges

Whenever structured data ismanually entered into forms,
after reading and analysing free text reports, quality is-
sues are unavoidable and need to be monitored. Despite
considerable efforts regarding quality, such measures
have not yet been implemented in routine by the three
cancer registries. Ideally, double annotations would allow
the monitoring of inter-annotator agreement (e.g. by
Kappa statistics) and subsequent adjudication of diverg-
ing annotations. This would allow ongoing quality assess-
ment at annotator level, which then triggers training and
coaching activities, as well as the ongoing refinement of
annotation guidelines. Inter-annotator agreement values
are also important reference data for assessing the out-
come of machine annotations. If language models are
trained by inconsistently annotated data, performance
measures achieved by information extraction performed
by a text mining system cannot be expected higher than
the threshold of human agreement.
Due to resource constraints in the cancer registries, this
study did not allow to measure interrater agreement,
which can be seen as a limitation for the evaluation of
the text mining tools we describe in the following sections.
However, existing inter-annotator agreement studies for
cancer registry coding in a German context have resulted
in 76.7% for ICD-O tumour localisation, 80.3% for ICD-O
morphology, 98.5% for ICD-O behaviour and 73.3% for
ICD-10, measured by Fleiss’ Kappa and considering full
agreement across all hierarchical levels [4].

1.3 Purpose of the study

Given the high workload required by the manual analysis
of pathology texts, the purpose of this study is to assess
how human language technologies, powered by state-of-
the-art artificial intelligence methodologies can support
this task. Such support can be capitalised by the following
scenarios:

• fully automated filling of registries by identifying rele-
vant text passages in pathology reports,

• support of manual data input by tentative pre-filling of
fields,

• automated clustering by tumour type (e.g. breast, lung,
colorectal, prostate),

• keyword highlighting to acceleratemanual annotation,
• content-based filtering, e.g. filtering by T4-tumours.

In this paper we will assess the quality of machine-based
analysis of pathology texts against a gold standard, i.e.
to which extent it fits the requirements of the registries.
The question which of the above scenarios can be sup-
ported would then be subject of a future implementation
study.

2 Background

2.1 Human language technologies
applied to medical texts

Natural language processing (NLP), particularly informa-
tion extraction [5], together with terminology and ontology
[6], [7] have been awarded increasing attention in
healthcare and biomedical research due to the predom-
inance of free text in electronic health records, opposed
to the need for structured and standardised data, e.g. for
observational research, health statistics, disease report-
ing, quality assurance and billing. Whereas the field of
biomedical terminology systems is huge, tumour docu-
mentation has internationally converged to a relatively
small set of terminological (quasi-)standards, with ICD-10
formacroscopic aspects, ICD-O formorphology and local-
isation, and TNM (version 7/8) for staging. Depending on
the tumour type, additional scoring systems and clinical
stage classifications are added, such as the Gleason
score for prostate tumours, or the Clark and Breslow
staging systems for skin tumours.
NLP methods that automatically assign such codes have
shown considerable progress, which, however, critically
depends on available resources like annotated corpora
and language-specific vocabularies. Apart from English,
all natural languages suffer from a lack of these re-
sources, which explains the underuse of NLP methods
despite increasing demand. For German, important
medical terminology resources lack localisation (e.g.
SNOMED CT [8] and the NCI thesaurus [9]). Another im-
portant reason for the underuse of NLP on clinical content
is the extreme brevity of clinical texts, characterised by
acronyms and abbreviations, which require disambigu-
ation efforts, unless under a very limited scope with a
specific vocabulary.
Due to data privacy and therefore the lack of public
availability of clinical texts – in contradistinction to sci-
entific text corpora like themillions of MEDLINE abstracts
and PubMedCentral full texts, clinical language processing
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Table 2: Document sets and properties used for this study

has mostly occurred inside closed information environ-
ments, with amounts of data orders of magnitude below
the size of openly available corpora. This constitutes a
limit to the use of recent approaches from the field of
machine learning – particularly deep learning [5], which
are currently revolutionising the way human language is
processed by computers. Wherever sufficiently large
(annotated) amounts of data are available to train specific
neural networks (NNs), models trained accordingly have
outperformed traditional machine learning methods.
Nevertheless, there is also evidence thatmanually-crafted
rules for specific extraction tasks can achieve better
results [10]. These findings should be taken into account
when processing clinical texts. In addition,manual annota-
tion of clinical texts is labour-intensive, so that the limits
of what is possible are quickly reached with supervised
learningmethods (i.e. those depending on human annota-
tion), given the amount of annotations necessary to
achieve the desired outcome.

3 Material and methods

3.1 Textual data

Our analysis is focused on pathology reports for four types
of cancer (breast, prostate, colon/rectum, skin). These
documents are usually sent to the cancer registries by
pathology labs as PDF files and do not follow any stan-
dardised template. All documents are in German. Several
documents may refer to the same patient, but do not
necessarily arrive in the order they have been created.
An important aspect is also that the source documents
used in this study are not representative for all pathology
reports produced in each state. This is due to the data
curation activities done by university hospitals (workflow 1
in 1.2.2). As a consequence, their source documents do
not reach the cancer registries, which receive structured
data instead.
Table 2 shows the free-text document sets that were
provided by the cancer registries. One document corres-
ponds to one pathology report.

3.2 Structured data

All structured data used for this study were strictly related
to datasets corresponding to exactly one document. Ac-
cording to the workflow, the dataset belongs either to a
tumour diagnosis record or a tumour progress record.
The fields of the datasets as given in Table 3 were used

for the comparison with the automatic text analysis in
our study.

Table 3: Fields of structured datasets used for comparison with
automated text analysis

The following applies to cancer registry data sets: dall

documents and structured rall records ( |dall| = |rall|). In
order to guarantee representativeness, the selection is
done according to the following criteria:

• coverage of a predefined period,
• cancer types: breast, prostate, colon/rectum, skin,
• all documents annotated in this period (or a random
sample thereof),

• only documents that were annotated or are scheduled
for being annotated.

The following data were excluded for being considered
out of scope for this study:

• structured data that were not extracted from a docu-
ment by the cancer registries (including structured
data that arrive at the registries together with a docu-
ment, but where no data extraction needs to be done
at the registries),

• structured data for which no document was available,
• data related to any cancer type other than breast,
prostate, colorectal or skin,

• the number of documents per patient is not taken into
account, because the study is on documents, not on
patients.

The rationale for this study design is that we exclusively
scrutinise the assigning of predefined codes or values to
narrative pathology reports. The hypothesis to be tested
is whether an NLP-based text mining approach extracts
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information items in a quality comparable to human ex-
perts.

3.2.1 Development and test set

The textual and structural data provided by the cancer
registry of Baden-Württemberg (BW) is utilized for the
initial customization of a commercial text mining software.
The overall dataset is divided into a development set with
44,324 reports and a test set with 2,057 reports. The
development set is used for the engineering, adaptation
and optimization of the rule-based components as well
as for the training of the machine learning models. The
BW test set is only applied for evaluation.
The remaining two datasets of RP (Rhineland-Palatinate
state, 26,894 reports) and LS (Lower Saxony state,
19,170 reports) are only utilized for evaluating the exist-
ing text mining system and thus provide a suitable exper-
imental setting to investigate its generalizability.

3.3 Tools

The text mining technology used is AHD (Averbis Health
Discovery) [11] by Averbis GmbH [12]. It contains over
50 different text mining annotators, e.g. for the recogni-
tion of diagnostic statements, medical procedures, lab
values, drugs, anatomy, morphology, scores and others.
Available for several languages, including English and
German, AHD bundles annotators in predefined text
mining pipelines tailored to document types like discharge
summaries or pathology reports. AHD has been success-
fully used for various use cases, e.g. for data driven pa-
tient recruitment for clinical trials [13], automated coding
and billing [14], documentation support in private prac-
tices [15], rare disease identification [16], antibiotic re-
sistance monitoring [17], radiology report analysis [18],
and health data de-identification [19]. Health Discovery
is based on the Unstructured Information Management
Architecture (UIMA) [20], an extensible framework for text
analysis and text processing. It stresses the interoperabil-
ity of components (analysis engines), which communicate
in a pipeline by adding or modifying themeta information
stored in the Common Analysis System (CAS), which
contains the currently processed document. This informa-
tion is represented by typed feature structures and in-
dexed for efficient access. The most common type of a
feature structure is the annotation, which assigns its type
and additional features to a span of text. Most analysis
engines create new annotations or modify existing ones
in order to represent the result of their analysis.

3.4 Experimental approach

3.4.1 Pathology pipeline

AHD’s pathology pipeline is designed for extracting infor-
mation from pathology reports and addresses challenges
typical for this text genre, which often contains sensitive
patient data or other protected health information. This

explains why there are no public datasets for applying
machine-learning-based approaches. Information needed
for pathology coding may not be explicitly present in the
document, but needs to be derived from different, inter-
related information. Finally, coding rules may differ from
cancer type to another.
To address these challenges, the pathology pipeline
combines different approaches and sources to deliver
high-quality coding results such as

• terminology concept mapping (ICD-10, ICD-O…) and
wordlists,

• rule-based annotations,
• machine learning,
• algorithms for combining the approaches.

The AHD pathology pipeline is composed of several gen-
eral purpose text mining components (e.g. for disambig-
uation) as well as specialized ones for clinical documents.
On top of this, a specialized component addresses cancer-
specific coding on document level.
In this section, we first describe the structure of the
pathology pipeline concerning themore general compon-
ents and then the component for cancer coding in more
detail. Table 4 describes the pipeline, with its compon-
ents, which are sequentially processed. Figure 1 shows
a screenshot of the interface of the pathology pipeline
within the AHD text mining system.
The pipeline components implement methodologies
ranging from rules and dictionaries to different kinds of
machine learning approaches. Terminology-based anno-
tators for tumour morphology and localisation apply dic-
tionary lookup with linguistic pre-processing, abbreviation
resolving and other extensions.Machine learning includes
shallow approaches like Maximum entropy models, Con-
ditional Random Fields and Support Vector Machines on
the one hand and deep learning approaches like Convo-
lutional Neural Networks on the other hand. Many com-
ponents rely onmanually engineered rules, which are still
the method of choice where training data are scarce or
annotations too expensive. The rules are created using
UIMA Ruta [21], which provides a mixture of declarative
and imperative paradigms to specify patterns of arbitrary
annotations and their consequences. Finally, some com-
ponents simply are composed of specific algorithms im-
plemented in a programming language.

3.4.2 Pathology document classification

Our document classification component for cancer registry
documents assigns the 13 output fields (see Table 3)
and is composed of multiple subcomponents. For an ini-
tial categorization, support vector machines (SVMs)
classify the pathology report into one of the supported
cancer types, i.e. breast, prostate, skin, rectum/colon.
This information feeds downstream processing steps for
cancer-specific fall-back values or coding rules.
Morphology and tumour localisation are then separately
classified using convolutional neural networks (CNNs),
independently of the cancer type identified. If no valid
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Table 4: Pathology pipeline

Figure 1: Annotations of the pathology pipeline, displayed in the AHD annotation editor

output is identified above a given threshold, different fall-
back procedures are applied for both tumourmorphology
and localisation: First, concepts for either type that have
been annotated by dictionary lookup are ranked using
SVMs, and the code with the highest confidence in its
context is selected for further processing. If no concepts
have been extracted, a fall-back value depending on the
cancer type is chosen. The final ICD-O codes are then
assigned given a predefinedmapping to ICD-10-GMdiag-
nosis codes.
The remaining entity types like tumour, node, metastasis,
grading, laterality and lymph nodes are selected using
only the pre-processing functionality of the AHD pipeline.
Specialized annotators detect potentially all related text
mentions. For multiple mentions, either the highest value

(e.g., grading) is selected or a majority voting is applied
(e.g., laterality).
Finally, a set of additional rules perform a final modifica-
tion of the values by using all given information. This post
processing adapts the coding to the cancer registry coding
guideline and induces values not directly represented in
the pathology report. One example is the rule that prostate
grading is not provided by TNM but by the Gleason score,
or that laterality only matters for breast cancer (the other
tumour sites are not bilateral), but that for both prostate
and colorectal cancer the guideline requires the laterality
value set to “T”. Figure 2 depicts the workflow.
For machine learning models, SVMs and CNNs are used,
supported by the following formative evaluations on the
BW dataset. The first ones, in particular multiple one-vs-
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Figure 2: Approach to determine the final output fields of the pathology pipeline

Table 5: Results of a five-fold cross evaluation for cancer type classification using SVMs

all linear SVMs are applied for the initial categorization
of the cancer type by single-label multi-class document
classification. The features only consist of bag-of-stems
and are weighted using logarithmic frequencies with re-
dundancy [22] with L2-normalization. The classification
model for the pipeline was trained using a subset of the
BW training set (37,880 reports). A separate five-fold
cross evaluation on this collection highlights the applica-
bility of themodel for the given task. The results in Table 5
indicate that classical (“shallow”) machine learning is
sufficient for this task.
A “deep” neural ML approach, viz. CNNs are applied to
the classification of tumour morphology and localisation
via single-label multi-class document classification. The
network architecture is based on Kim et al. [23] using
TensorFlow [24]. As an input space, fastText word embed-
dings with subword information provide a good trade-off
between classification accuracy and prediction speed.
The embeddings are tuned on the given data and classi-
fication task during the training of the model. The hyper-
parameters of the CNNs are optimized using BOHB [30],
a combination of Bayesian Optimization and Hyperband.
The models are trained on the complete train set of BW
(dtrain). Evaluation results (F1 score) on the test set com-
paring the performance to a baseline support vector
machine (SVM) are depicted in Table 6. This clearly sup-
ports our option for using CNNs for this task.

Table 6: Comparison between SVM and CNN on tumour
localisation and morphology classification

4 Results
Text mining quality was evaluated for the features of
Table 4 by comparing the automatic recognition with the
manual coding results of the cancer registries. For each
feature, the F1 score (a harmonic mean of precision and
recall) was calculated. It was assumed that the manual
coding results were correct and could therefore be con-
sidered the gold standard. However, we will see that this
assumption is relativized by a detailed error analysis, as
an important aspect of the results we report.

4.1 Overview

Figure 3 shows the evaluation results of the three cancer
registries across all features. For 9 of 13 features, the
F1 scores are highest for the BW state.
In the following, the results for each of the three cancer
registries (BW, RP, LS) are explained and interpreted in
detail.
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Figure 3: Overview of evaluation results. Dark blue BW (Baden Württemberg state), medium blue LS (Lower Saxony), light blue
RP (Rhineland Palatinate)

4.2 EvaluationBaden-Württemberg state
(BW)

4.2.1 Results

The evaluation of the BW cancer registry was performed
on the test dataset n=2,057. The results show an F1
score greater than 0.8 for all features, using the manual
coding results as ground truth (Table 7). The lymph node
status features are distinguished by particularly high F1
score values with a match of up to 99.6%. The lowest
value is found for the R-Class feature.

Table 7: Evaluation results by feature for the BW dataset. The
diagnosis values (ICD-10-GM) are derived from the tumour

localisation and morphology ICD-O codes.

4.2.2 Gap analysis

For assessing gaps in the pathology feature extraction,
the top 10mismatches of the abovementioned test data
set (n=2,057) were reviewed by experts at the feature
level (Table 8). Since “diagnosis” is derived from tumour
morphology and localisation, it is not included in this
analysis.

Table 8: Top 10 deviations (BW dataset)

The deviations can be summarized in six categories
(Table 9).
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Table 9: Deviations by categories (BW dataset)

4.3 Evaluation Rhineland-Palatinate
state (RP)

4.3.1 Results

The evaluation of the RP dataset shows F1 score values
between 0.6153 (Grading) and 0.9725 (Sentinel Nodes
affected), cf. Table 10. In particular, the scores for tumour
morphology and localisation, as well as ICD-10 diagnosis
are up to 0.29 lower when compared with the BW results.

Table 10: Evaluation results by feature (RP dataset). The
diagnosis values (ICD-10-GM) are derived from the tumour

localisation and morphology ICD-O codes.

4.3.2 Gap analysis

For a variance analysis in the pathology feature extraction,
the top 10 mismatches of the above-mentioned data set
(n=26,894) were reviewed by experts at the feature level
(Table 11). Where appropriate, sources of error were ag-
gregated. Again, “diagnosis” is not considered in the gap
analysis as this feature is derived from the morphology
and topography codes.

Table 11: Top 10 deviations (RP dataset)

The deviations can be summarized in eight categories
(Table 12).
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Table 12: Deviations by categories (RP dataset)

4.4 Evaluation Lower Saxony state (LS)

4.4.1 Results

The evaluation of the LS dataset shows F-values between
0.768 (Nodes tested) and 0.9836 (Sentinel Nodes af-
fected), cf. Table 13. Similar to RP data, particularly for
tumour morphology, localisation and diagnosis, values
are significantly lower compared to BW (up to 0.141), al-
though not to the same extent as in the RP dataset.

4.4.2 Gap analysis

Again, the top 10 mismatches of the above-mentioned
data set (n=19,170) were reviewed by experts at the
feature level (Table 14). Where appropriate, sources of
error were aggregated. The feature “diagnosis” is not
considered in the gap analysis as it is derived from the
morphology and topography codes.
The deviations can be summarized in six categories
(Table 15).
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Table 13: Evaluation results by feature for the LS dataset. The diagnosis values (ICD-10-GM)
are derived from the tumour localisation and morphology ICD-O codes.

Table 14: Top 10 deviations (LS dataset)

Table 15: Deviations by categories (LS dataset)
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5 Discussion
Figure 3 shows for most of the features that the BW
dataset produced the best result, followed by LS and RP.
This is not surprising because BW is the first cancer re-
gistry that is already using AHD in their daily business. In
several iterations, all models and rules had been tailored
to these data. Data also show that the results of the fea-
tures extracted by rules were more robust compared to
those based on models trained on the BW dataset. Tu-
mour localisation and morphology F-values suffered
severe drops up to 30%. Only the rule-based grading and
laterality values showed a similar behaviour.
The BW error analysis shows that automatic highly accu-
rate text recognition, with deviations from the manual
coding results are within the range of interrater reliability.
Most deviations do not result from text mining errors, but
from the application of coding rules by the coding staff.
Some of these rules can easily be reengineered using
rule-based NLP methods.
In the LS and RP datasets, many errors could also be
traced back to a lack of compliance with coding rules, or
slightly different local preferences. In addition, it was
evident that the diversity of language in pathology reports
prevented that ML procedures performed equally well.
Inconsistencies in the gold standards, especially for
morphology, reinforce this. In addition, differences in fall-
back values (which are assigned in case of missing data)
explain disagreements (T, U, X are not always used con-
gruently). Nevertheless, we have to admit that the results
for ICD-O morphology and localisation codes are subop-
timal. Larger and more representative training corpora
will be required, as well as a better implementation of
quality mechanisms and rules that manage borderline
cases. Just to cite one example: the use of the residual
category C50.9 (unspecified location of breast cancer)
should raise suspicion, since it is hardly plausible that
this important information is missing in the original data.
Grading, node and metastasis status are other frequent
sources of gold standard errors. To quantify the influence
of these factors and, as a consequence, to assess the
overall performance of the AHD pipeline would, however,
require inter-coder agreement values for each dataset.
Given the absence of such data, the only source of infor-
mation was the qualitative inspection, which nevertheless
provided strong evidence that

1. the current gold standard has its shortcomings, so
that the information extracted by AHD was often cor-
rect whilst the gold standard was wrong,

2. a limited set of adjustments should significantly im-
prove the text mining performance, and that

3. difficult boundary issues between tumour localisation
and morphology codes, with known disagreements
between human coders will always set a limit to the
F-values to be expected.

In summary, it is noticeable that the MLmethods trained
on the BW dataset perform better on the LS than on the
RP dataset, and for the feature “morphology” even com-

parably well as for BW. A large part of the deviations is
due to missing information in the gold standard or diver-
ging fall-back values. If the evaluation is adjusted for
these factors, there are good reasons to assume that the
actual recognition quality in all features is already 90%
and higher.
The institutional contexts and workflows make it difficult
to compare our results to others’. A very recent work [25]
compared multitask learning with single-task learning
using CNNs and achieved better results for the multitask
approachwith up to 60% correctly classified cases accord-
ing to morphology, localisation, laterality, grade and be-
haviour, together. Taking ICD-O tumour localisation and
morphology, alone, micro-averaged F1 scores amounted
to 0.915 and 0.776, respectively, using single-task CNNs.
Multitask CNNs (applied to all the five tasks) increased
the results by about three percentage points. Multitask
CNN results cannot be compared to our study, where
CNNs were only used for tumour localisation andmorpho-
logy. More important, however, is the fact that Alawad et
al. [25] used only three-character codes for tumour local-
isation and four character codes for morphology. Thus,
they used a restricted set of about 130 classes, which
eliminated many of the boundary issues we discussed.
No inter-coder agreement values were provided.
CNNs also showed the best performance in a study on
identification of ICD-O localisation codes for breast and
lung cancer. With a small set of 12 different 4-character
codes [26], with F1 results between 0.722 and 0.811.

6 Conclusion and outlook
From a technical perspective, the results of this study
demonstrate that a hybrid solution that includesmachine
learning, terminology mapping and rules produces the
best results. Whereas challenges such as clinical coding
itself are not explicitly addressed, we could demonstrate
that the several pieces of information to be extracted had
to be interpreted in combination, so that a layered,
pipeline-based approach turned out to be themost appro-
priate.
Technical challenges included different and non-standard-
ised spelling variants and notations, particularlymentions
of location and laterality, as well as the correct identifica-
tion of information items and the way they were related,
e.g. locations with tumour types.
The work was done under field conditions, which means
that the need for high quality reference datasets – a
fundamental requirement for effective training ofmachine
learningmodels – had to be satisfied by routine data that
had grown from practice over long periods, during which
annotation rules have changed, many coding staff were
involved, and strict quality control measures were only
partly put in place. Although no systematic inter-coder
agreement data were available from this data, other
studies have shownmajor disagreements between coders
for both ICD-O tumour morphology and localisation.
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Pathologists usually show little interest in ICD-O coding
and structured data collection in general, as long as no
financial or scientific incentives are given. This explains
conflicting information between textual and semi-struc-
tured representations in the same pathology dataset.
Fine-grained and coarse-grained information coexists,
e.g., a breast quadrant specified in the text along with
the “unspecified” C50.9 code, or a precise textual descrip-
tion of a tumour morphology along with the unspecific
code “adenocarcinoma or the like”. Trained with this kind
of data, even the best possible ML system will underper-
form and good ML decisions will be classified as wrong.
Languagemodels and rules tailored to one cancer registry
will continue underperforming at another cancer registry
as long as coding rules and heuristics (e.g. how to deal
with missing data) are not the same. Harmonisation at a
national level is a desideratum, regardless of the use of
manual, automated or hybrid methods. Lack of harmoni-
sation affects data comparability. Nevertheless, we can
state that text mining has proven a very suitable approach
to support resource-intensive manual coding and to
contribute to quality control and coding standardisation.
To this end, text mining tools are of high heuristic value,
as they bring quality gaps and inconsistent coding rules
to the surface.
Along these lines, a next step would then consist in iter-
ative cycles that combine text mining withmanual inspec-
tion and disagreement analysis. The scope of model
training and validation should be broadened by including
data from other cancer registries and institutions. Once
such a newworkflow has proven its usefulness by increas-
ing performance values, text mining routines can be
adapted to new functionalities and additional tumour
types.
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