
Causal evidence in health decision making:
methodological approaches of causal inference and health
decision science

Kausale Evidenz in der medizinischen Entscheidungsfindung:
methodische Ansätze der Kausalinferenz und der Entscheidungsanalyse
im Gesundheitswesen (Health Decision Science)

Abstract
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Finally, we derived recommendations for further research and provide
a brief outlook on future trends.
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and costs. It involves decision analysis, a systematic, explicit and
quantitative framework to guide decisions under uncertainty. Decision
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analyses are based on decision-analytic models to mimic the course of
disease as well as aspects and consequences of the intervention in
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comprehensive sensitivity analysesmust be performed to assess uncer-
tainty. Besides the appropriate choice of the model type and the valid
specification of the model structure, it must be checked if input para-
meters of effects can be interpreted as causal parameters in themodel.
Otherwise results will be biased.
Conclusions: Both causal inference and health decision science aim
for providing best causal evidence for informed health decisionmaking.
The strengths and limitations of both methods differ and a good under-
standing of both methods is essential for correct application but also
for correct interpretation of findings from the described methods. Im-
portantly, decision-analytic modeling should be combined with causal
inference when developing guidance and recommendations regarding
decisions on health care interventions.
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Zusammenfassung
Zielsetzungen:Die Entscheidungsfindung imGesundheitswesen ist ein
komplexer Prozess, der auf gründlichen und umfassenden Bewertungen
von Gesundheitstechnologien beruht und den Vergleich verschiedener
Strategien, Werte und Kompromisse unter Unsicherheit beinhaltet.
Dieser Prozess muss auf den besten verfügbaren Erkenntnissen und
plausiblen Annahmen beruhen. Kausalinferenz und Entscheidungsana-
lyse sind zwei methodische evidenzbasierte Ansätze, die Informationen
liefern, um die Entscheidungsfindung im Gesundheitswesen zu unter-
stützen. Bei beiden Ansätzen handelt es sich umquantitativeMethoden,
die statistische Techniken und Modellierungstechniken sowie vereinfa-
chende Annahmen verwenden, um die Komplexität der realen Welt zu
imitieren. Wir beabsichtigen in dieser Publikation, auf der Grundlage
von Lehrbuchwissen und Expertenerfahrung beide Disziplinenmit ihren
Zielen, Stärken und Grenzen darzustellen.
Methoden: Um das Verständnis und die Unterscheidung der methodi-
schen Ansätze der kausalen Inferenz und der gesundheitswissenschaft-
lichen Entscheidungsanalyse zu erleichtern, haben wir beideMethoden
mit dem Schwerpunkt auf Ziele, Forschungsfragen, Methoden, Annah-
men, Grenzen und Herausforderungen sowie verfügbare Software un-
tersucht. Für jeden methodischen Ansatz setzten wir eine Gruppe von
vier Experten aus unserer eigenen Arbeitsgruppe ein, um jedeMethode
sorgfältig zu begutachten und ihre Charakteristika zusammenzufassen.
In den darauffolgenden strukturierten Diskussionsrunden und schriftli-
chen Überprüfungenwaren Experten aus allen Disziplinen einschließlich
Health Technology Assessment (HTA) undMedizin beteiligt. Die gesamte
Expertengruppe diskutierte Ziele, Stärken und Grenzen der beiden
methodischen Bereiche undmögliche Synergien. Abschließend wurden
Empfehlungen für die weitere Forschung abgeleitet und ein kurzer
Ausblick auf zukünftige Trends gegeben.
Ergebnisse:Methoden der kausalen Inferenz zielen darauf ab, kausale
Schlussfolgerungen aus empirischenDaten über die Beziehung zwischen
vorher festgelegten Interventionen und einembestimmten Zielendpunkt
zu ziehen. Es werden ein kontrafaktischer Rahmenansatz und statisti-
sche Techniken angewandt, um kausale Auswirkungen von Expositionen
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oder Interventionen aus diesen Daten abzuleiten. Die kausale Inferenz
basiert auf einemKausaldiagramm, genauer gesagt auf einem directed
acyclic graph (DAG), der die Annahmen bezüglich der kausalen Bezie-
hungen zwischen Variablen darstellt. Je nach Art des Confounding und
des Selektionsbias sind traditionelle statistische Methoden oder kom-
plexere g-Methoden erforderlich, um gültige kausale Effekte abzuleiten.
Neben der korrekten Spezifikation des DAG und des statistischen Mo-
dellsmüssen Annahmenwie Consistency, Positivity und Exchangeability
überprüft werden, wenn man kausale Schlüsse ziehen möchte.
Die gesundheitswissenschaftliche Entscheidungsanalyse zielt darauf
ab, die politische Entscheidungsfindung in Bezug auf Gesundheitsmaß-
nahmen zu unterstützen, wobei mehrere konkurrierende Ziele einer
Entscheidung auf der Grundlage von Daten aus verschiedenen Quellen
und Studien berücksichtigt und abgewogen werden. Diese Studien
umfassen z. B. Prävalenzstudien, klinische Studien und langfristige
Routinebeobachtungsstudien zur Wirksamkeit sowie Studien zu Präfe-
renzen und Kosten. Die Entscheidungsanalyse bietet einen systemati-
schen, expliziten und quantitativen Rahmen, um Entscheidungen unter
Unsicherheit zu strukturieren. Entscheidungsanalysen basieren auf
entscheidungsanalytischenModellen, die den Krankheitsverlauf sowie
die Aspekte und Folgen der Intervention nachbilden. Je nach Art des
Entscheidungsproblems werden Entscheidungsbäume, Zustands-
Übergangs-Modelle (z. B. Markov-Modelle), diskrete Ereignissimulations-
modelle, dynamische Übertragungsmodelle oder andere Modelltypen
verwendet. Die Modelle müssen anhand von Beobachtungsdaten vali-
diert werden, und es sind umfassende Sensitivitätsanalysen durchzu-
führen, um die Unsicherheit zu bewerten. Neben der angemessenen
Wahl des Modelltyps und der validen Spezifikation der Modellstruktur
muss geprüft werden, ob die Einflussparameter für die daraus resultie-
renden Auswirkungen als kausale Parameter im Modell interpretiert
werden können. Andernfalls werden die Ergebnisse verzerrt.
Schlussfolgerungen: Sowohl die kausale Inferenz als auch die gesund-
heitswissenschaftliche Entscheidungsanalyse zielen darauf ab, die
beste kausale Evidenz für eine informierte Entscheidungsfindung zu
liefern. Die Stärken und Grenzen beider Methoden sind unterschiedlich,
und ein gutes Verständnis beider Methoden ist für die korrekte Anwen-
dung, aber auch für die korrekte Interpretation der Ergebnisse der be-
schriebenen Methoden unerlässlich. Wichtig ist, dass entscheidungs-
analytischeModellierungenmit kausalen Inferenzmethoden kombiniert
werden, wenn es um die Entwicklung von Leitlinien und Empfehlungen
für Entscheidungen über Interventionen im Gesundheitswesen geht.

Schlüsselwörter: kausale Inferenz, Health Decision Science,
Epidemiologie, entscheidungsanalytische Modellierung, medizinische
Entscheidungsfindung, Health Technology Assessment

1 Introduction
According to theWorld Health Organization (WHO), public
health is “the science and art of promoting health, pre-
venting disease, and prolonging life through the organized
efforts of society” [1]. This involves many different disci-
plines, all of them aiming to protect the health of popula-
tions. Politicians and public health decisionmakers need
to decide which health care programs are implemented
based on thorough and comprehensive health technology
assessments (HTA) [2], which evaluate the balance of
benefits, harms, cost-effectiveness, ethical, legal, social

and patient aspects, and given limited resources and di-
verse needs [3], [4], [5]. Such decisions are often complex
andmust usually bemade under uncertainty, sometimes
with imperfect knowledge and evidence, and in some
cases under extreme time constraints [6]. Therefore,
these decisions must rely on the best available evidence
at the time of decision and they must apply the most rig-
orous methods. Among others, statisticians, epidemiolo-
gists and health decision scientists are involved in ana-
lyzing and summarizing the data in order to derive the
potential causal consequences of alternative health
technologies, that is, any actions representing possible
choices under decision [3], [7].
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Epidemiologists and statisticians provide information on
disease occurrence and spread of the disease. Further,
they investigate potential risk factors and effectiveness
of interventions. This knowledge is usually gained from
empirical studies. One area of epidemiology, causal infer-
ence, aims to draw conclusions on the causal effect of
interventions (actions) from empirical data and prior
knowledge. Identifying causal relations between the inter-
ventions (or “actions”) under investigation and the target
outcomes of interest provides potential for actions to
maintain or improve health [8]. Only if the relation
between an action and an outcome is causal, the action
under investigation will show the intended effect. In
general, studies that are considered to have the lowest
risk for bias are well-designed randomized clinical trials
(RCT) [9]. However, the external validity and generalizab-
ility may be limited, since RCTs usually have strict inclu-
sion criteria. Therefore, additional evidence from real-
world observational studies is needed. Observational
studiesmay suffer less from external validity but aremuch
more prone to biases such as confounding and selection
bias reducing internal validity. Such biases must be con-
trolled for using the appropriate causal methods [10],
[11], [12].
Health decision scientists usually do not only derive con-
clusions from primary studies but often (if not in most
cases) synthesize information from different sources [4].
They typically lay out and analyze all aspects of a complex
decision and identify the “optimal” choice of intervention.
To achieve this goal, information on all aspects relevant
to the decision problem is needed over a sufficiently long
time horizon that includes all important consequences
of such a decision. Important aspects include but are not
limited to patient-relevant benefits in terms of morbidity,
duration of disease, health-related quality of life and
mortality as well as harmful unintended effects, cost-ef-
fectiveness and other aspects [13]. Such information is
rarely available from one empirical database. Hence,
health decision science identifies the best available data
sources and combines these data in a decision-analytic
model in order to simulate the causal effects of the
compared interventions [5], [14], and transfers the exist-
ing evidence to the population of interest [14]. Asmodels
are simplifying the complex world, assumptions are re-
quired. A decision-analytic [14] study following best
practice principles transparently lays out the simplifying
assumptions which are part of the model structure [15],
[16], [17], [18] as well as the input parameters for the
model [19], [20]. Knowing that decisions must be made
on the basis of the best available data and under uncer-
tainty, the first choice of a health decision analyst is not
to omit uncertainty, but rather identify the potential con-
sequences of uncertainty [19], [20].
Both disciplines, causal inference epidemiology and de-
cision-analytic modeling in health decision science, rely
on assumptions and often very complex models. In order
to see the strengths and limitations of both methodolog-
ical approaches and to be able to judge the applicability
and validity of each approach in the light of a specific

decision problem, the key principles of bothmethods and
related techniquesmust be known and their interrelation
must be understood. However, most of the published lit-
erature either focuses on epidemiology or on health de-
cision science, and therefore, even systematic reviews
are not helpful when assessing the differences and po-
tential synergies of both methods. Thus, in this scoping
document, we intend to review and lay out both disci-
plines with their aims, strengths and limitations based
on a combination of textbook knowledge and expert ex-
perience.

2 Methods
For this scoping document, we reviewed and summarized
the methods of causal inference and health decision
science. In order to address both differences and over-
arching concepts of these methods, we created a group
of experts from our own working group. We chose two
“bridging” experts with extensive expertise in both areas
(FK, US) and we added three further experts with particu-
lar expertise in both causal inference (MS, IS, DS) and
health decision science (BJ, ACF, GS) as well as a health
technology assessment (HTA) expert (PSI) and an expert
in medicine (SS). The expert groups in causal inference
and in health decision science carefully reviewed and
summarized the description of the respective method
with a focus on the following predefined topics: aims, re-
search questions, methods, assumptions, limitations and
challenges, and software. Rather than performing a sys-
tematic literature search, the experts used their experi-
ence and expertise as well as their knowledge regarding
common textbooks [5], [8], [10], [11], [21], [22], [23],
[24], [25], [26], [27], [28], [29], methodological guidelines
and key references [2], [4], [6], [12], [15], [16], [17], [18],
[19], [20], [30], [31], [32], [33], [34], [35], [36], [37],
[38], [39], [40], [41], [42], [43], [44], [45], [46], [47],
[48], [49], [50], [51], [52], [53], [54], [55], [56], [57],
[58], [59], [60], [61], [62], [63], [64], [65], [66], [67],
[68] in the field to summarize and explain each method.
The next step involved structured discussion rounds and
written reviews, in which the experts from all disciplines
including HTA and medicine were involved. Both the
causal inference and health decision science group
presented the respective method. Questions were struc-
tured regarding content and scientific terminology and
language. In the expert discussions, the questions were
carefully answered and reasons for misunderstanding
were debated. The improved explanation of the method
was transformed into text and a common language for
reporting, presenting and explaining each method was
sought. The written word was again reviewed by the group
of the respective other areas to make sure that the de-
scription is understood outside of the own scientific
community.
In order to relate the theoretical methods to applied real
world decision problems, we selected case examples
from the medical literature. The chosen case examples
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were selected in a way that they served both the formal
and intuitive understanding of causal effects of interven-
tions aiming at typical exposures or medical treatments.
We sought to use examples that required both causal
inference and decision-analytic modeling to comprehen-
sively answer the decision question.
Finally, the entire expert group discussed strengths and
limitations of both methodological areas, and how these
methods can be used in synergy with a focus on selected
key issues of the case examples from the literature. Fi-
nally, we derived recommendations for further research
and provide a brief outlook on future trends.

3 Results

3.1 Causal inference

3.1.1 Causal aims and research questions

The goals of many research questions are causal in
nature: will a new drug lead to lower 5-year mortality
compared to the currently used drug? Does the use of a
certain medical device improve quality of life (QoL) com-
pared to not using the device?Would the implementation
of a new government antismoking campaign in school
decrease the rate of smoking? Such causal questions
are always tied to an action, applied to a unit (such as a
person): for example, a person can decide to apply an
icepack on a sports injury and depending on whether the
icepack is being used or not, we may observe a different
amount of swelling the next day. If the respective person
did actually use the ice, we may ask what would have
happened if the person (contrary to the fact) had not used
it. This is a hypothetical scenario which is counterfactual,
that is, different from the “fact” that has actually been
observed. The core of causal inference is to understand
that causal questions relate to outcomes that are coun-
terfactual, are therefore not observed, and –most impor-
tantly – cannot be calculated from the observed data
distribution alone, exactly because a post-intervention
distribution (that results from a change in action) is the
one of interest.
The formalisms and notations used in causal inference
often refer to counterfactuals [8]: let A be an intervention
of interest (e.g., a drug) and Y be the outcome of interest
(e.g., mortality), then Yi

a is the outcome for unit i that
would have been observed if the unit had been exposed
to action a (possibly contrary to the fact). Causal inference
is typically not possible on an individual level; thus, esti-
mands such as the average treatment effect (ATE),
E(Y1)–E(Y0), with E() being the expectation, and the super-
scripts denote the counterfactuals,
are of interest. The ATE compares the expected outcome
that would have been observed if every unit had received
the intervention a=1, compared to if every unit had re-
ceived a=0. Similar estimands for binary interventions
and binary outcomes are the causal risk ratio (RR) or
causal odds ratio (OR) respectively:

RR=P(Y1=1)/P(Y0=1), where P() is the probability
OR=(P(Y1=1)/P(Y1=0))/(P(Y0=1)/P(Y0=0))

Above we asked whether applying an icepack on a sports
injury reduces swelling. If A is binary and refers to the
icepack (1, if used; 0 otherwise) and Y is the measured
circumference of the knee with ordinary tape measure
24 hours after applying the icepack, then E(Y1)–E(Y0), that
is, the ATE, is the estimand that corresponds to the sci-
entific question asked.
It may sound trivial, but the first task in causal inference
is to commit to a causal estimand that captures the sci-
entific question of interest. Common estimands are ATE,
RR and OR for binary interventions. For continuous inter-
ventions, so-called marginal structural models (MSM),
which relate a counterfactual outcome with the interven-
tion, are important, for example, E(Ya)=f(A), where f() is
an arbitrary function. All these estimands may be condi-
tional on a subset of the population, say smokers and
non-smokers. Often, questions of effect modification are
captured in such conditional estimands.
In summary, causal questions are inherently tied to ac-
tions/interventions that result in outcomes that are not
always observed. Counterfactual notation is a language
that can be used to translate a scientific question into a
formal quantity. To precisely define such quantities, sev-
eral decisions have to be made: definition of the target
population, choice of variables to be intervened upon,
type of intervention (one or many time points), outcome
of interest and the choice of effect measure (e.g., risk
ratio, MSM, possibly conditional on subgroups).
If one has committed to a specific scientific question,
represented by a counterfactual estimand, causal infer-
ence requires:

1. A causal model, that is, a model which summarizes
the knowledge on how the data has been generated.

2. An evaluation of whether in a given context the causal
question can be answered; and if yes, what data and
assumptions are required.

3. An appropriate statistical method.

In the next section, causal models are introduced.

3.1.2 Directed acyclic graphs

Causal subject-matter knowledge can be expressed with
directed acyclic graphs (DAGs), among other options (such
as non-parametric structural equationmodels). In a DAG,
each circle represents a variable (in this text, A represents
an action and Y an outcome). An arrow from A to Y repre-
sents the knowledge or assumption that A causes Y
(Figure 1a). More importantly, the absence of an arrow
means we assume no causal relationship between the
two respective variables. It is important to understand
that DAGs are used to summarize and visualize the data-
generating process of a natural causal process that exists
independent of which data have been measured. As a
consequence, variables in a DAG may be measured or
unmeasured in particular studies.
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Figure 1: Examples of directed acyclic graphs (created with and following the layout of the software “daggity” [158])

In DAG language, concepts such as confounders, colliders
and mediators are important. A confounder is a variable
that causes two other variables, such as illustrated by
the variable L in Figure 1b. Note that L proceeds A and Y
in terms of time, as otherwise it could not be a cause of
both A and Y. A collider is a variable that is being caused
by two other variables, see Figure 1c. Here, A and Y pre-
cede L. A mediator or intermediate step M lies on the
path between A and Y (see Figure 1e). These concepts
are important to establish whether a particular causal
question can be answered, and if yes, how, as outlined
in the next section.

3.1.3 Identification and assumptions: can the
research question of interest be answered?

Identification means establishing whether for a given
estimand (e.g., the ATE) and a given causal model en-
coded in a DAG, the causal question can be answered or
not, and if yes, under what assumptions, and which vari-
able should be used for controlling for confounding. The
answer to this question lies in Pearl’s back-door criterion
[23]: informally speaking, this criterion says that we need
to (i) “block all back-door paths” from A to Y, and (ii) not
control for “descendants” of A in the analysis. Let us

clarify what is meant by this criterion. A back-door path
is defined as path from A to Y that starts with an arrow
into A (i.e., starting with A ← … as opposed to A → …).
Consider Figure 1b: here, A← L→ Y is a back-door path,
where L confounds the effect of A on Y. The confounding
generated by L can be removed by blocking that path,
that is, by including L in the analysis (i.e., “adjusting for
it”, see Section 3.1.4 below). A path is also blocked if it
contains a collider (which is not “adjusted for”); for ex-
ample the path A ← L→ L2 ← Y is a back-door path be-
cause it starts with an arrow into A and it is blocked be-
cause it contains a collider (L2). The path would be
opened if L2 was included in the analysis, but closed if
both L and L2 were included. Colliders can appear in
many circumstances, and may even relate to missing
data or censoring indicators. The interested reader is re-
ferred to well-known examples such as the obesity para-
dox [69], the smoking-preeclampsia paradox [70], the
birthweight example [71], the sodium intake paradox
[58], and survival bias [8], [72]. A descendant is a variable
that results from A, that is, a variable M on paths such
as A → M or A → …→M. A mediator is a descendant of
A and conditioning (“adjusting for”) on mediators, or any
of the mediator’s descendants, would be incorrect.
Figure 1e and Figure 1f give examples.
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In summary, Pearl’s back-door criterion typically tells us
which variables to include in the analysis and which ones
not. If we are interested in the effect of A on Y, measuring
and conditioning on mediators (or descendants of the
mediators) is incorrect. However, to close all back-door
paths from A to Y, confounders are typically conditioned
upon (adjusted for), if measured, while colliders are not
supposed to be included in the analysis. As a con-
sequence, unmeasured confoundersmay prohibit appro-
priate causal effect estimation, whereas unmeasured
mediators or colliders may not necessarily be a problem.
Before estimating the quantity that relates to the scientific
question of interest, it makes sense to reflect upon the
assumptions that are usually quoted in the literature be-
ing necessary to conduct causal inference. In simple
(single time point) settings, they can be expressed as
follows:

1. Consistency: that is, if Ai=a, then Yi
a=Yi , with i being

the individual subjects
2. Positivity: that is, P(A=a|L=l) > 0 for all P(L=l)≠0
3. (Conditional) Exchangeability: Ya independent of A|L

for all A=a and L=l

Hernan and Robins [8] and Schomaker et al. [72] give
the corresponding definitions for longitudinal setups.
What do these assumptionsmean? Informally, conditional
exchangeability refers to comparability of the compared
arms and is met if all back-door paths can be blocked by
adding the respective confounders as “adjustment vari-
ables” in the analysis (see below) [44]. Thus, inspection
of the DAG and evaluation of what variables have been
measured leads to a statement on whether conditional
exchangeability is likely met or not. Note that this assump-
tion cannot be tested from the data. Consistency is a
technical requirement to link the observed data to the
counterfactual. It may however be violated if an interven-
tion is not well-defined or multiple versions of the inter-
vention exist. For example, if a surgery can be performed
in multiple ways, then the link between the surgery (A=1)
and the counterfactual outcome (Ya=1, or briefly Y1) is not
clear, as different versions of the interventions may lead
to different counterfactual outcomes. There are many
subtleties around this assumption that is often viewed
as a theorem rather than an assumption; see the litera-
ture for a thorough discussion [51], [73], [74], [75]. Pos-
itivity requires a positive probability of treatment assign-
ment across all covariate strata. In a finite data set, with
a couple of (possibly continuous) covariates, there will
often be some violations. However, the positivity assump-
tion can sometimes be relaxed, especially if appropriate
“smoothing” methods are used (see below).
Note that randomized experiments typically fulfil the
above assumptions by design: positivity is guaranteed as
by definition P(A=a)>0; consistency is not an issue if the
study protocol is unambiguous about the intervention;
and exchangeability is guaranteed as well. Therefore,
randomized experiments do not face the problem of
confounding (neither measured nor unmeasured), see
also Figure 1d. However, if randomized experiments face

practical issues such as non-adherence to treatment as-
signment, or treatment switching, measurement error
or drop out, additional corrections may be required or
causal inference may be impossible. The interested
reader is referred to the literature [8], [46], [48], [49].
Below, we are now going to introduce statistical methods
that are suitable for causal inference from observational
data (or imperfect randomized experiments).

3.1.4 Estimation: the statistical model

To illustrate appropriate statistical methods, we are intro-
ducing an example. We are looking at an example from
cancer epidemiology; see Luque-Fernandez et al. [59],
[76]. In this example, we are interested in the effect of
dual treatment therapy (radio- and chemotherapy), com-
pared to single therapy (chemotherapy only) on the
probability of one-year survival among colorectal can-
cer patients, that is, the estimand of interest is
P(Y1=1)/P(Y0=1). We know that there are confounders
which affect both treatment assignment and the outcome,
namely clinical stage, socioeconomic status, comorbidi-
ties, and age. Evidence shows that older patients with
comorbidities have a lower probability of being offered
more aggressive treatments and therefore they usually
get less effective curative options. Also, colorectal cancer
patients with lower socioeconomic status have a higher
probability of presenting with an advanced clinical stage
at initial diagnosis, thus they usually get offered only
palliative treatments. This knowledge is represented in
the DAG shown in Figure 2.
The causal DAG in Figure 2 tells us that there are no
mediators or colliders that would need to be taken into
account when estimating the effect of cancer treatment
onmortality. There are, however, various back-door paths
that start with arrows into the treatment variable. They
can be blocked if the variables of L=(age, socioeconomic
status [SES], comorbidities, stage) are included and ad-
justed for in the analysis.
We now introduce four causal inference methods to es-
timate this effect if the data on all variables has been
measured [8], [11]. Othermethods are briefly commented
on at the end of this paragraph.

3.1.4.1 The g-formula

This method integrates out the confounders, with respect
to the post-intervention distribution. If L is discrete we
can state it as:

E(Ya)=∑l E(Y|A=a,L=l) x P(L=l)

This equality holds under the abovementioned assump-
tions of conditional exchangeability, positivity and consis-
tency. In our example, where E(Ya)=P(Y1=1), we can pro-
ceed as follows:

• Step 1. Estimate a logistic regression model for the
conditional expectation E(Y|A=a,L=l), that is,
P(Y=1|A,L).
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Figure 2: Directed acyclic graph for cancer

• Step 2. Following the time-order, create a new data
set where L is estimated by the empirical distribution
(i.e., filled in with the observed data) and A is inter-
vened upon, that is, set as A=1 (for every unit).

• Step 3. Then, using the estimated regression model
from step 1 and the new (post intervention) data from
step 2, predict the outcome under this setup. Take the
mean of the predicted outcome as an estimate for
E(Y1)=P(Y1=1).

• Step 4. Repeat steps 2 and 3 for A=0, to obtain an
estimate for E(Y0)=P(Y0=1).

• Step 5. Now, the causal risk ratio P(Y1=1)/P(Y0=1) or
the causal risk difference P(Y1=1)–P(Y0=1) or any other
effect measure can be estimated using the estimates
from above.

• Step 6. Use bootstrapping to obtain confidence inter-
vals.

In our example above, using the simulated data from
Luque-Fernandez and a regression includingmain effects
and interactions of treatment and SES and stage, we
obtain a causal risk ratio of 0.46 (95% CI: 0.41; 0.52).
This means the risk if everyone had received dual therapy
is 0.46 times the risk of everyone receiving monotherapy
(under the above mentioned assumptions).
The g-formula was first applied in a doctoral thesis of
Siebert assessing risk factor intervention on coronary
heart disease (CHD) under the supervision of Robins and
co-supervision of Hernán in a collaboration project with
the World Health Organization (WHO) [77], [78].

3.1.4.2 Inverse probability of treatment weighting (IPTW)

This method uses weighting in order to achieve condition-
al exchangeability within the strata of the confounders.
The weighted population is a pseudo population in which
there is no confounding. Under the abovementioned as-

sumptions of conditional exchangeability, positivity and
consistency, and for a binary intervention, it holds that

E(Ya)=E(Y×I(A=a)/P(A=a|L=l).
IPTW can be implemented in many ways. For example,
in the cancer example we can do the following:

• Step 1. Estimate the intervention assignment mecha-
nism P(A=1|L=l) using logistic regression.

• Step 2. For those units that actually received the
treatment (I(A=1)), predict the probability P(A=1|L=l)
from the regression model of step 1.

• Step 3. To estimate E(Y1)=P(Y1=1), use a weighted
mean of the observed outcomes, where the weights
are the inverse predicted probabilities for those units
where A=1, and 0 otherwise.

• Step 4. Repeat steps 2 and 3 to estimate
E(Y0)=P(Y0=1).

• Step 5. Now, the causal risk ratio P(Y1=1)/P(Y0=1) can
be estimated using the estimates from above.

• Step 6. Use bootstrapping or robust standard errors
to obtain confidence intervals.

In our example above, we obtain a causal risk ratio of
0.47 (95% CI: 0.40; 0.55).
Marginal structural models with IPTW were first applied
in (2000) by Hernán and colleagues assessing the causal
effect of zidovudine on the survival of HIV-positive men
[45].

3.1.4.3 Nested structural models with g-estimation

This is a semiparametric method that estimates the po-
tential outcome for each individual using a causal (i.e.,
structural)model and correlates these potential outcomes
with the observed intervention/exposure variable within
levels of confounders L, using the assumption of no un-
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measured confounding (ANUC). The parameters of the
causal model that yield a zero correlation between the
potential outcomes and the observed intervention/expos-
ure within levels of confounders L are the “true” model
parameters.

• Step 1. Choose a causalmodel structure (e.g., additive,
multiplicative) and keep the causal effect measure(s)
as (a) parameter(s) in this model.

• Step 2. For each subject in the dataset, calculate the
potential outcome Ya=0 “backwards” from the observed
outcome Y by “removing” the intervention effect in
those with the observed intervention A=1 for each set
of causal model parameters within strata of L.

• Step 3. Find the counterfactual outcome so that the
observed intervention A is independent of the potential
outcome Ya=0 given confounders L (i.e., minimize corre-
lation, maximize p value).

• Step 4. Use the effect estimate from the model identi-
fied in step 3 as the intervention’s causal effect esti-
mate.

Nested structural models with g-estimation were first
applied in (1992) by Robins assessing the causal effect
of prophylaxis therapy for Pneumocystis carinii pneumonia
on the survival of AIDS patients [62].

3.1.4.4 Regression

Another popular option, which works under specific cir-
cumstances, is to use regression techniques, and inter-
pret the regression coefficients causally. In the cancer
example, a logistic regression model (which includes the
intervention and all covariates) leads to an odds ratio of
0.31 (95% CI: 0.26; 0.37). A Poisson regression leads to
an estimated risk ratio of 0.46 (95% CI: 0.40; 0.53).
While using regression coefficients for causal effect es-
timation is common, it comes with two caveats: first,
causal effect estimation for many longitudinal setups is
invalid (see below); and second, regression targets are
by definition conditional effect estimands, while often
marginal quantities are of interest, as in our example. In
general, there is no guarantee that marginal and condi-
tional estimates are identical, for example, when the ef-
fect measure (e.g. odds ratio) is not collapsible or under
effect modification; see Luque-Fernandez et al. for a
thorough discussion and illustration of this phenomenon
[76].
Traditional regression analysis has first been applied by
Legendre in 1805 [79] and by Gauss in 1809 [80] in the
field of astronomy to derive the orbits of comets around
the sun. Regression analysis has been used innumerable
times in the evaluation of interventional effects in health
sciences, economics and other fields [27].
G-formula, IPTW and g-estimation are summarized under
the term “g-methods”. G-methods can be extended to the
longitudinal setup, where interventions are time-varying
and occur at multiple time points. Details on g-methods
can be found in the comprehensive online textbook of
Hernán and Robins [8] and further comprehensive mate-

rial from the literature [31], [32], [42], [68], [72], [81].
An important point to highlight in the context of causal
inference is that in the presence of time-varying confound-
ing, the use of naïve regression may give invalid results
and g-methodsmust be used [36]. Time-varying confound-
ing occurs when confounders are simultaneously affected
by the treatment or exposure of interest. That is, in our
terminology: a confounder Lt affecting At is also affected
by a prior intervention At–1 such that the following causal
chain is resulting: At–1 → Lt → At → Lt+1 → At+1 → Lt+2 →…
etc. [8].

3.1.5 Limitations and challenges

The use of causal inference comes withmany challenges.
Some of the key issues are described in the following.
First, from a statistical perspective, model specification
is crucial: for IPTW, the intervention assignment mecha-
nism needs to be modeled correctly, possibly at each
time point for longitudinal settings. For the application of
g-estimation in settings where treatment differs over time
(e.g., treatment is “on” during some times and “off” during
others), the assumption of common effects must be
made, which may or may not be valid [62]. For the g-for-
mula, the outcome model as well as confounder models
for the longitudinal setting need to be modeled correctly
[8], [11], [61], [78]. It is likely that models are misspe-
cified in many applications and hence effect estimates
may be biased. To overcome this problem, doubly robust
estimators, such as targetedmaximum likelihood estima-
tion (TMLE), have been developed. They allow for the in-
tegration of machine learning algorithms while retaining
valid statistical inference. This is typically not the case
for IPTW, regression, and the g-formula. The brief idea of
TMLE is as follows: first, the data are standardized with
respect to L, as with the g-formula. Then, the intervention
assignment mechanism is used to update the g-formula
estimate. This may then reduce bias, or narrow the con-
fidence interval limits, if no bias is existent. Unbiased
estimation is possible, even if one of the two models (for
Y or A) is misspecified. Tutorials and software for TMLE
methods are available [59], [82], [83], [84].
Second, coming up with a meaningful and well-justified
DAG is a general challenge, independent of which causal
statisticalmethod is used. Some progress has beenmade
with respect to this topic in the field of “causal discovery”,
that is, searching and learning the DAG from data and
additional assumptions (e.g., about time sequence) [85],
[86]. However, it remains unclear to what degree DAGs
derived with causal search algorithms from data will be
a feasible and robust option for deriving DAGs from data
[87].
Third, violations of the positivity assumption are common.
Approaches such as IPTW are particularly sensitive to
such violations, while the g-formula and TMLE in combi-
nation with machine learning are less prone to such
problems [88]. Nevertheless, the development of more
robust approaches is an active area of research [89].
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3.1.6 Software

All mentioned methods (IPTW, g-formula, g-estimation,
regression, TMLE) can be implemented manually in
standard statistical software (e.g., SAS, Stata, R). Guid-
ance is given in the respective tutorials [42], [59]. A flex-
ible software available is the ltmle package for the statis-
tical software R, which can be used for deriving IPTW,
g-formula and LTMLE estimates, for cross-sectional and
longitudinal data. It integrates estimation with machine
learning and allows survival analysis [83]. A similar
package, tmle, offers the same features, but not for lon-
gitudinal data [82]. A recent R-package, gfoRmula [90],
handles a variety of settings, including longitudinal data
with competing risks. There is also a good Stata routine
for implementing the g-formula [37]. In Stata, an imple-
mentation for TMLE is available, too [26], [28], [29], [91],
[92].

3.2 Health decision science

3.2.1 Health decision science aims and
research questions

The main aim in applications of health decision science
is to guide clinical or public health decisions based on
evidence and prior knowledge. Clinical and public health
decisions are complex and involvemany different aspects,
values and trade-offs, and must usually be made under
uncertainty.
According to the Encyclopedia ofMedical DecisionMaking
[93], one of the most important tasks of health decision
analysts is to derive causal interpretations from decision-
analyticmodels. In suchmodels, an intervention, strategy,
action, or risk factor profile is modeled to have a causal
effect on one ormoremodel parameters (e.g., probability,
rate, or mean), which influence the outcome such as
morbidity, mortality, quality of life, etc.
Decisionsmay have to bemade on the level of individuals,
subgroups or the entire population: What is the optimal
personalized treatment strategy for a specific patient with
specific characteristics? Should a screening program be
offered to a specific population? Should a new drug be
covered by the national health insurance? Should the
government introduce a mandatory policy of face mask
wearing in the light of an infectious disease outbreak?
On an individual level, aspects driving such a decision
may be the individual’s well-being, the expected course
of the disease, the expected quality of life, potential be-
nefits, potential risks or side effects, own preferences,
etc. On the societal level, different aspects may trigger
the decision. Besides the benefits, any intervention may
induce potential risks or harms, demand to the caregiver,
costs and have ethical, legal and social implications.
Decisions may include multiple strategies, and single
time point interventions, complex treatment algorithms,
or entire programs. These potential strategies must be
well defined.

Health decision science uses amethod known as decision
analysis, which informs decisions on choices regarding
multiple objectives [94]. Decision analysis uses decision-
analytic models and simulation techniques to derive in-
cremental benefit-harm or cost-effectiveness ratios when
comparing different interventions or health technologies
[3], [4], [5], [95]. Other terms with the same or similar
meaning include “computer simulation”, “mathematical
models”, or “agent-based models”. Decision analysis is
a quantitative systematic approach that aims to (1) expli-
citly lay out all aspects of a decision, (2) balance all ele-
ments of the decision, (3) identify the “optimal” decision
based on a-priori defined criteria and concepts (e.g.,
utilitarianism), and (4) provide a structured basis for dis-
cussion. Health decision science is not the art of automat-
ically making the decision without human involvement
[3], [4], [5], [95].
A formal decision analysis includes (1) a well-defined re-
search question, (2) a decision-analytic model, (3) valid
model input parameters, outcomes, and preferences, (4)
an analytic time horizon, (5) validation, (6) base-case
analysis, and (7) evaluation of uncertainty (sensitivity
analysis) [15], [16], [17], [18].
The first step of a decision analysis is to structure the
decision problem itself. This includes identifying the re-
search question. In trials, we are used to the PICO
framework, where P stands for population, I for interven-
tion, C for comparator, and O for outcome. Besides all
those aspects, the research question in health decision
science needs to include the perspective and the time
horizon. Therefore, in analogy to prognostic studies, one
could request a PICOST framework, which includes also
time horizon and setting. The optimal strategy may differ
depending on the outcome chosen, the perspective ad-
opted, and the willingness to pay elicited (see section
3.2.6), and the time frame considered.
The simulated population should reflect the target popu-
lation for which the decision is intended to be made, that
is, patient characteristics and the respective healthcare
setting, country, etc.
We need to lay out all relevant intervention choices re-
garding interventional strategies, including the current
standard of care, to obtain a list of suitable “compara-
tors”. These interventions may involve policies, complex
treatment strategies with dynamic testing and treatment
algorithms, drug treatments, nonpharmaceutical interven-
tions (such as quarantine), surgeries or complex mul-
tidisciplinary programs. When contrasting the alternative
choices, we follow the counterfactual approach, that is,
we compare a world where choice A is made to a world
where choice B is made, to a world where choice C is
made, etc.
In health decision science, the outcome of interest may
have multiple attributes including benefits and harms
regarding medical, economic, preference-based (quality
of life), or time (time spent for care) outcomes. The pref-
erence is included by weighing the life by its health-related
quality, at any given point in time, and then discounting
benefits, harms and cost to reflect the time preference
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(e.g., preferring a benefit or cost savings now compared
to later). In order to compare the alternative choices, the
outcome measures are combined in a contrasting result
measure. Examples are incremental harm-benefit ratios
(IHBR) expressed as number of additional harms to pre-
vent one case of disease or to incremental cost-effective-
ness ratios expressed in additional cost per quality-adjust-
ed life year (QALY) gained. However, other combinations
are also possible such as the benefit harm trade-off [96].
The perspective adopted may be patient-centered, or fo-
cused on the caregiver, the health care provider or payer,
in addition to the societal perspective [97]. The perspec-
tive of the analysis is crucial for including the correspond-
ing health effects and costs.

3.2.2 The decision-analytic model and
assumptions

Decision-analytic models can be used to run computer
simulations. Such models are a replicable and objective
attempt to mimic the complexity and uncertainty of the
real world in amore simple and comprehensiblemanner.
Decision-analytic models should account for events over
time and across populations, changing risks, and uncer-
tainty. The purpose of decision-analytic modeling is to
estimate the effects of an intervention on valued health
consequences and costs. The data implemented in de-
cision-analytic models may be based on evidence from
several primary and/or secondary sources and is ex-
plained in section 3.2.3 [3], [4], [7], [14], [30], [66], [98],
[99].
Several different model types exist that may be combined
when appropriate [2], [15], [16], [17], [18], [38], [53],
[54], [63], [64], [66], [67], [100], [101], [102], [103],
[104], [105], [106], [107], [108], [109]. For relatively
simple problems with a fixed time horizon and no time-
dependent parameters, decision trees may be suitable.
When time is important and influences parameters and
events, and where events are repetitive, state-transition
cohort (Markov) models may be preferable [63], [64].
However, Markov models follow the Markovian assump-
tion that transition probabilities are independent of prior
history. Information about patient history and further
characteristics should be included in the definition of
simulated health states. If an unmanageable number of
health states is required, individual-level state transition
microsimulation models (microsimulations) [63], [64] or
agent-based models (ABM) may be alternative modeling
approaches not limited by the Markovian property [110],
[111]. In thesemodels, patient history and other informa-
tion pertaining to certain simulated individuals can be
tracked and updated during the simulation and determine
transitions. Agent-based models, discrete event models,
or dynamic transitionmodelsmay also be an option when
the model needs to simulate interactions between indi-
viduals [112]. In some decision problems, resource con-
straints or queueing may be a problem, which can be
explicitly simulated with discrete event models [2], [38],
[66], [67], [100], [101], [102], [103], [104], [105]. It

should be noted that sometimes informally, the term
‘cohort model’ is used for modeling groups and the term
‘microsimulations’ or ‘agent-based’ models is used for
modeling individual units.
Often, a decision-analytic model is a combination of a
short-term decision tree and a long-term disease model.
This is explained using an example for such a “hybrid”
model combing a decision tree and a Markov state
transition model. The decision tree starts with decision
options and the first action of the options, which could
be a test, a treatment, etc. The recursive disease model
is then attached and could be any of the abovementioned
models. A typical research question is contrasting treat-
ment strategies to testing and treating depending on test
results strategies and no treatment strategies [14], [113],
[114], [115], [116], [117]. A potential starting decision
tree is shown in Figure 3.
When structuring a disease model, one has to (1) deter-
mine health states, (2) determine transitions, (3) estimate
event and transition probabilities, (4) estimate state util-
ities and costs per time unit, and (5) choose an analytic
time horizon. For a Markov model, time is divided into
cycles with fixed duration (i.e., cycle length). The basic
structure of a model is based on prior knowledge and
often visualized and discussed using a state transition
diagram as shown in Figure 4, which displays the different
health states and the possible transitions. During the
time dwelling in a given health state, a simulated patient
collects benefits and/or harms (e.g., QALYs and costs)
and is at risk of moving to another health state based on
the characteristics of the current health-state. The
Markovian assumption denotes that only the current
health state determines the risk of transitioning to anoth-
er health state. Prior history, that is, prior health states,
does not influence that transition probability [110], [111].
A state-transition microsimulation gets around this prob-
lem by simulating one individual at a time and gathering
(and memorizing) information during the course of dis-
ease. This also allows estimating time to pre-specified
events. When building discrete event simulation (DES)
models, individual history can also be taken into account.
However, transitioning is modeled as time to event in
contrast to a rate or probability to progress to the next
state, as it is done in state transition models [52].

3.2.3 Input parameters

Data used to inform input parameters of decision-analytic
models can be derived from prior knowledge, primary
(individual-level) data, secondary data such as the pub-
lished literature and study reports, or – if data are not
available – from expert opinion. Primary data would be
the first choice, as the analyst has some flexibility to
generate the input parameter data in a format that suits
the purpose of the model. However, often primary data
are not accessible to calculate all transition probabilities
over the entire time horizon of the model. The strength
of a decision-analytic model is that one can combine
evidence from multiple sources and use the findings to
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Figure 3: Potential decision tree as start of decision problem in HIV-positive patients

Figure 4: State transition diagram

make predictions for a different setting (in terms of differ-
ent time-horizons or similar populations). As secondary
data are often presented in a format that cannot be di-
rectly used for the model, data need to be transformed.
Several methods exist on how to transform or adjust such
data in order to serve the model.
In section 6, we briefly describe the main components of
model input data and how to transform such data.

3.2.4 Model validation

Models are artificial constructs simplifying the real world
and synthesizing evidence with different quality. There-
fore, it is important to assess the validity of the model.
The ISPOR-SMDM Modeling Good Research Practices
Task Force published guidelines onmodel validation [39],
[40]. Five steps of validation are recommended, though
inmany instances not all five can be implemented. These
five steps are face validation, verification or internal val-
idation, cross validation, external validation, and predic-
tive validation. The face validation may be performed by
discussing the model structure as well as input parame-
ters and sources with a team of experts. Internal valida-

tion is performed by checking the codes and data manip-
ulation process. This can be done by reproducing input
data, hand calculation checks and extreme value calcu-
lations. Cross validity is provided by comparing the results
of a given model with other models analyzing the same
problem in the same cohort. External model validation
compares the model results with real-world results. Pre-
dictive model validation is rarely done. It is comparing
model results with prospectively observed events [39],
[40].

3.2.5 Performing the analysis

When conducting the analyses of a cohort model, the
entire cohort is simulated at the same time, while in mi-
crosimulationmodels, the individuals are run through the
model one by one [113], [114], [118], [119]. As men-
tioned earlier, decision-analytic models may be used to
analyze multiple outcomes. Over the time horizon of the
analysis, outcomes are accumulated to the total average
outcomes. To evaluate the impact of parameter uncer-
tainty on model results and associated conclusions,
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sensitivity analyses should be performed (see section
3.2.8.).

3.2.6 Model results

Health outcomes and costs of alternative health technol-
ogies or treatment strategies are evaluated and compared
across strategies. A common combined measure is the
incremental cost-effectiveness ratio (ICER). The ICER is
calculated by dividing the difference in total costs of al-
ternative technologies by the difference in the chosen
measure of health outcome or valued effect (e.g., QALYs).
The ICER provides information on extra cost per extra unit
of health effect of a new versus standard strategy [120].
Most countries use those ICERs to compare them to ICERs
of other treatment options across the health care system.
Other countries compare those ICERs only to other
treatment options within the same area of indication
[121].

3.2.7 Uncertainty analysis

A model is just as good as its input parameters. On the
other hand, input parameters themselves are surrounded
with uncertainty. Sensitivity analyses are widely requested
to test the impact of uncertainty around input parameters
and assumptions on the model structure [15], [16], [19],
[20], [122]. In the literature, estimates on the mean or
median, standard error and 95% confidence intervals for
input parameter values are usually provided. In determin-
istic sensitivity analyses, parameter values are varied
within defined ranges or using specified data points. In
probabilistic sensitivity analyses, parameter uncertainty
(random errors) is described by distributions and consid-
ering all relevant parameters at once [25].
However, systematic errors may also be a problem and
may also be within the input parameters. As the model
is based on secondary evidence, it is dependent on its
valid estimation and reporting. When certain results are
published more often than others, publication bias may
be an issue. Also, decision analysis is interpreting almost
all input variables causally. Only unbiased estimates
should therefore be included in the model. When the
model structure is not correctly specified, systematic bias
may occur. The validation process helps to identify those
errors.

3.2.8 Limitations and challenges

Breaking down complex decisions to simplified models,
is the big asset as well as the main limitation of decision
analysis. As Weinstein and Fineberg say [95]:

Nature is probabilistic
And information incomplete
Outcomes are valued
Resources limited
Decisions unavoidable

A decision-analytic model simplifies the complexity of
nature and uses primary evidence to populate themodel.
This bears potential for bias. First, simplifying nature
comes with simplifying assumptions, and is therefore
prone to uncertainty and bias. Moreover, some decision-
analytic models are relatively complex and need quite
extensive data that may not always be available, or data
are only available for another population and setting, and
therefore, causal interpretation in another context may
be questionable. However, despite the complexity and
uncertainty in the decision problem, the decision must
be made. So, we need aids to structure a decision prob-
lem in an explicit and transparent manner. Well-conduct-
ed decision-analytic studies clearly lay out the assump-
tions made and provide extensive sensitivity analyses
testing those assumptions.
Furthermore, it should be clear that decision-analytic
studies are not providing any new primary empirical
evidence.Most decision-analytical studies gather, assess,
abstract, andmerge published evidencewithout providing
own primary data analyses. As the aim of decision analy-
sis is laying out the entire environment and complexity
of the decision problem, empirical data from one source
are never sufficient to solve the decision problem. By
merging data for several competing outcomes and from
several sources, decision-analytic studies provide a
structured view on the decision as well as quantitative
tradeoff measures such as incremental benefit-harm ra-
tios or incremental cost-effectiveness ratios to explicitly
inform about the tradeoff between benefits, harms and
costs caused by compared interventions.
Decision-analytic models often value the outcomes by
adjusting the life expectancy by the quality of life at each
time point and each health state using utility weights.
These utility weights express preferences for health
states. It is widely debated whether preferences can be
applied to entire cohorts, knowing that preferences may
differ widely between individuals. Furthermore, it is de-
bated whether preferences can be applied as a constant
number assuming that the preference for a given health
state is constant. A lot of ongoing research is aiming to
improve utility assessment and the application of utilities
in decision-analytic models.
Decision analysis follows the utilitarian philosophy of
maximizing utilities. However, other aspects may trigger
the decision and the optimal choices laid out by the de-
cision-analytic model may not reflect all relevant aspects
to be considered by the patient, caregiver, or politician.
This does not indicate that the decisionmaker is irrational
but rather that the decision-analytic studies face the dif-
ficulty of incorporating all aspects that go into a decision
such as ethical, political, or legal concerns. Some aspects
may even be conflicting.
It must be noted that decision-analyticmodeling according
to methodological guidelines and best practice recom-
mendations requires a substantial amount of time and
resources [15], [16], [17], [18], [19], [20], [39], [40],
[53], [54], [63], [64], [66], [108], [109], [112], [123]. The
goal of decision analysis is to explicitly lay out and balance
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all aspects of a decision and to be transparent with all
assumptions and data. To meet this goal, best available
evidence must be detected, assessed, abstracted, and
combined. In addition, the model must be developed,
calibrated, validated, and analyzed. This is a time-consum-
ing undertaking and may take several months or years.

3.2.9 Software

Decision-analytic software for model development ranges
from visual interactive modeling software with graphical
user interfaces to high-level programming languages.
Programming languages are most flexible with respect
to code writing and run-time optimized code but require
in depth programming skills. Visual interactive modeling
software supports model implementation and model
visualization for decision makers. Software such as
TreeAge, AnyLogic, Arena, Simul8, Vensim or others are
specialized in different modeling approaches. In parts,
this software supports transformation of input parameter
values (e.g., rates to probabilities or fitting of distributions
to underlying data like in survival analysis). However, input
parameter values or risk functions that determine transi-
tions and the pathway of patients are mainly determined
upfront using statistical software packages. The statistical
programming language R is increasingly applied for data
analysis and to build decision-analytic models, since de-
cision-analytic packages are being developed to support
model implementation and analyses [124], [125]. General
programming languages such as Java, C++ or Python are
applied especially for complex individual level simulations
(state transition microsimulation, DES, agent-based
models).

4 Discussion

4.1 Summary

This scoping document summarizes the methods of
causal inference in epidemiology and health decision
science. Both areas aim at comparing different interven-
tion strategies following a counterfactual approach and
estimating a valid causal effect on one or more outcomes
of interest. Both methods aim at generating evidence to
guide decision makers in complex decision making pro-
cesses. In this paper, we described each method sepa-
rately using a common language and selected case ex-
amples. This should aid and support understanding and
appraising studies that apply these methods.
Causal inference is themethodology using empirical data
to draw conclusions on one intervention on one or more
disease outcomes of interest over a specified, often lim-
ited, time horizon. Health decision science methods are
usually applied later in the decision process, looking at
health policy questions where aspects besides clinical
elements are being considered and reflected in the out-
comes. Patient preferences are part of the analysis that
is based on multiple sources and very often secondary

data. The time horizon is often longer than the one of
clinical studies or observational databases and simulation
is used to extrapolate outcomes or link evidence from
short-termRCTs and long-term observational data.Models
in health decision science studies depend on unbiased
model input parameters. These input parameters include
effect estimates that must be drawn from epidemiologic
causal inference studies.
There are several features that are critical for both
causal inference and decision-analytic modeling. In both
fields, the population of interest must be chosen or
defined. Then the causal structure of the decision problem
must be discussed and implemented. Data must be col-
lected: in the case of causal inference, the epidemiolo-
gists may start a cohort study; in the case of decision-
analyticmodeling, the decision analysts will start perform-
ing systematic literature reviews to gather evidence on
the model parameters. Finally, both methods estimate
an effect of the intervention.

4.2 Context to literature

Some published literature exists comparing the perfor-
mance of both methods using specific examples [126],
[127]. The focus of these studies regarding the decision-
analyticmethods is the performance of ABM. The authors
question how decision-analytic models can transform
retrospectively gained knowledge into the future. This is
an important aspect of decision science in general and
decision making itself. How can prior knowledge help to
make the best possible decision? The literature looks at
very detailed parts of decision analysis and is meant for
“statistically minded researchers”. Further literature de-
scribes the difficulties of ABMwhen being applied in areas
outside of the areas from which its parameters were ob-
tained from [128]. These aspects raised in the literature
are very important, valuable and complex. The intention
of our scoping document is different. We believe that ex-
plaining both methodological areas to a wider audience
is an important if not necessary first step providing the
basis for discussion. This understanding can then be used
to make decisions when and how causal inference and
decision-analytic modeling can be used and combined in
the decision making process.
Often decision-analytic models base their estimated
transition probabilities on epidemiological studies that
report associations without claiming a causal relation.
This is discussedwith three examples: (1) using prediction
scores, (2) transferring data to other populations and
time horizon, (3) risk of biases in effect measures from
RCTs, (4) using regression models as model input para-
meters.
Example 1: The FraminghamHeart Study is a well-known
study predicting the 10-year risk for cardiovascular events
[129]. The prediction formula is often used in decision-
analytic models to calculate the risk of coronary heart
disease (CHD) based on subjects’ clinical and other
characteristics. For example, intervening on lifestyle is of
interest and decision-analytic models are constructed
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using the risk score from the Framingham heart study
[130]. However, regression methods as used in the
Framingham Heart Study work well for the prediction of
CHD risk, but we need to be careful when interpreting
these associations causally. On the causal pathway of
body mass index (BMI) to coronary heart disease (CHD)
for example, physical activity may be a time-dependent
confounder (i.e., a confounder that simultaneously acts
as an intermediate step). In these situations, g-methods
must be applied to validly estimate the causal effect of
change in BMI on the occurrence of CHD [11].
Of note, it has taken nearly two decades from the devel-
opment of the theoretical concept of the g-formula by
Robins [61] until this causal inference method was first
applied by his doctoral student Siebert to real world data
in his dissertation under the supervision of Robins and
co-supervision of Hernán in a collaboration project with
WHO aiming to assess the causal effect of interventions
on multiple risk factors of CHD [11], [78].
Example 2:Murray and colleagues compared the perfor-
mance of decision-analytic microsimulation (here called
“agent-based modeling”) and the application of the
g-formula in estimating the 12-month mortality in HIV-
positive patients [128]. They concluded that both model-
ing techniques performedwell when the input parameters
of the agent-basedmodel are estimated within the same
cohort the model is reflecting. However, when estimates
are being extrapolated to other populations or time hori-
zons with different underlying risk factors, the agent-
based modeling may result in bias.
Example 3: Not only observational studies are at risk of
biases. Due to ethical and practical reasons, some RCTs
allow switching to the active treatment when disease
progression is observed. However, when randomization
is violated, risk of time-dependent confounding is an issue
[131]. The National Institute for Health and Care Excel-
lence (NICE) in the UK has published several appraisals
that come to very different cost-effectiveness ratios when
using input parameters estimated using g-methods or
traditional (associational) methods [57], [132], [133],
[134], [135], [136]. Those different input parameters
would have led to very different decisions.
Example 4: A well-performed and transparently described
decision-analytic diabetes microsimulation model [137],
[138] estimates the transition probabilities for risk factors
and disease complications based on (traditional) regres-
sion coefficients. The regression analysis is conducted
using a large observational cohort. This author group was
able to use this cohort study to estimate each transition
parameter. However, when developing the regression
model for the use of estimating transition probabilities
for a decision-analytic model, one has to carefully con-
sider whether the estimated parameters can be inter-
preted causally.

4.3 Limitations

This scoping document has several limitations. The selec-
tion of textbooks and articles included in this scoping

work was primarily based on the long-term experience of
the expert authors and no systematic literature search
was performed. However, an unsystematic search was
used to address issues related to the combination of
causal inference and decision-analytic modeling.
In this scoping document, we did not cover all aspects of
the methodological areas of causal inference and health
decision science. Parts that were not explicitly discussed
are complications with compliance, selection bias, un-
measured confounding or immortal time bias. These is-
sues are debated in the field of causal inference as well
as among decision analysts [43], [47], [50], [139], [140],
[141]. Also, details and problems of causal model spe-
cification were not discussed in detail. In this scoping
review, we did not cover decision-analytic models with
interactions between individuals. This is especially rele-
vant when assessing measures against the spread of
acute infectious diseases. The terms “public health” and
“modeling” likely became known over the entire globe
during the COVID-19 pandemic. In addition, decision-
analytic techniques such as discrete-event simulation
(DES) exist that are especially useful for research ques-
tions looking at scarce resources and issues of queueing
(waiting lines) [33], [52], [53], [54], [65], [142]. We did
not discuss these methods in this scoping review. The
full scope of causal inference and health decision science
is enormous and growing daily, and the scope of this re-
view was to provide a basic overview of these methodo-
logical approaches. Hence, our focus was on a description
of the concepts and an overview of commonly applied
models. For more detailed and complex information, the
corresponding text books and methodologic papers
should be consulted [10], [15], [16], [17], [18], [19], [20],
[23], [32], [39], [40], [46], [47], [49], [50], [53], [54],
[55], [62], [63], [64], [66], [73], [108], [109], [143],
[144].
Another limitation of this scoping document is that the
examples from the literature have not been based on a
systematic review but have been chosen based on their
ability to provide a formal and intuitive understanding of
the causal question and the relevance to causal inference
as well as decision-analytic concepts. The examples came
from different diseases and covered different important
aspects. The examples showed that in a decision-analytic
model, parameters for risk factors that are influenced by
the intervention of interest should be kept in the causal
equations for outcomes mediating the effect of these in-
terventions. This may be difficult when the estimates
come from regression models with selection criteria fol-
lowing mere statistical (e.g., p-value based) rules [12],
[35]. Further, the examples showed that even data from
RCTs need to be carefully interpreted when randomization
in the trial was violated, for example by treatment
switching, in particular if this switching would not be
possible in one of the counterfactual worlds. Another ex-
ample pointed to a study that sensitized for potential
problems when transferring data from one population to
another and from one time horizon to another. We wanted
to show that transition probabilities at different positions
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in decision-analytic models must be seen as causal
model input parameters. Hence, the modeler must care-
fully watch and question such links.
An interesting field is the validation of causal inference
analyses and decision analyses with external and inde-
pendent data. Increasingly, causal analyses of observa-
tional data are compared to clinical trials. The data from
the causal analysis are used to emulate a clinical trial
based on the target trial approach [50], [55], [144]. If the
results from a trial are available, the two study types can
be compared. Decision analyses usually have a longer
time horizon, and therefore, the real future is often sug-
gested as a gold standard to assess the validity of the
models. The latter approach is mostly not feasible, as
health care changes, the behavior of people changes,
and other circumstances may change, which will all lead
to different results.
Ewald and colleagues [41] performed a systematic review
and meta-analysis comparing the results from 141 RCTs
(120,669 patients) with those of 19 MSM-studies
(1,039,570 patients) and concluded that the results of
the MSM studies differed from those of the RCTs, and
“caution is required when nonrandomized “real world”
evidence is used for healthcare decisions” [41]. However,
as standardization for the different study populations in
RCTs and observational studies is not possible based on
mere secondary data, it is not known how much of the
difference between RCTs and observational studies is
explained by different underlying study populations or by
different study designs and (residual) confounding in the
observational studies.

4.4 Outlook and future trends

Causal inference has come a long way since Robin’s
milestone article in 1987 [61] and meanwhile has made
its way into mainstream science and epidemiologic text-
books [145]. However, most applications have been in
the areas of medicine and epidemiology, with IPTW being
the most dominant estimation technique [34]. As IPTW
is known to be potentially sensitive to positivity violations
andmodel misspecification, an uptake of modern doubly
robust estimation techniques (e.g., TMLE), in conjunction
withmachine learning, can be expected. Avoiding human
error in modeling is certainly a dominant trend in the
current research field. For these estimators to perform
well, good choices for appropriate machine learning al-
gorithms have to be made [24], [146]. One promising
approach is the highly adaptive LASSO estimation [147].
To avoid the problem of positivity violations, the use of
stochastic interventions has been proposed [148]. While
a focus on computational trends ismeaningful, the choice
of appropriate correction methods in randomized trials
[49] and the development of standards for explaining
and justifying DAGs are certainly other areas of high re-
search priority.
Another field in which we expect more applications of g-
methods is in RCTs with treatment switching. Several
methodological approaches have been developed in the

last years [136], [149], [150], [151], and HTA agencies
and networks have included the use of g-methods for
adjusting for treatment switching in its HTA recommenda-
tions [57], [131]. We will hopefully seemore comparisons
of (1) causal inference studies and RCTs, (2) causal infer-
ence studies with studies using the traditional regression
methods, (3) causal inference studies and decision ana-
lyses. And we will hopefully also see more collaboration
of these two fields. Due to the integration of causal infer-
ence courses in scientific societies such as the Society
for Medical Decision Making (SMDM), the International
Society for Pharmacoeconomics and Outcomes Research
(ISPOR) etc., there will be more cases in which decision
modelers critically judge their model parameters from
the literature but also use DAGs themselves when gener-
ating a causal decision-analytic model.
It is expected that we will see more educational efforts
on causal inference, decision-analytic modeling, but also
in the combination of both fields.
Perhapsmost importantly, the causal target trial approach
may slowly enter the field of medicine and public health,
and guide researchers to design their observational
studies well.
Finally, the new partnership of causal inference and
health decision science will be extended by a third party:
machine learning in causal inference andmodeling allow-
ing for applying these methods in big data.

5 Conclusions
Our scoping document shows that both causal inference
and health decision science are important components
of a comprehensive and valid health policy decision
making process. Both methodological areas are aiming
for providing evidence to optimally guide evidence-based
decision making. However, the approaches, strengths
and limitations of thesemethods differ. Causal inference
uses empirical individual level data to draw causal con-
clusions on the effect of an action on (usually) a single
or selected outcome. Decision science, on the other hand,
aims at integrating all aspects of a decision and at com-
paring the effect of two or more strategies on several in-
tegrated outcomes. It combines outcome measures, for
example, life expectancy and quality of live, and synthe-
sizes data from several sources. Both disciplines use
complex computer models that need to be correctly spe-
cified and sometimes lack acceptance. Both methods
have potential for bias. The typical biases in causal infer-
ence analyses are those that are common in observation-
al database analyses including confounding, immortal
time bias, selection bias and others. In decision-analytic
studies, the risk of bias is mostly due to false assump-
tions, oversimplified model structures, biased input
parameters, or insufficient consideration of uncertainty.
Basic knowledge on both of these methods is necessary
to decide when and how these methods are applied. Im-
portantly, bothmethods should be combined when devel-
oping health decision guidance and recommendations,
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for example in clinical guidelines, health technology as-
sessment reports, reimbursement decision dossiers, pa-
tient information and shared decisionmaking processes.
Further research should contrast these methods and
identify interfaces for synergies, both in research and
education.

6 Technical notes on input
parameters
The following description is based on a former project
funded by the Austrian Research Promotion Agency (FFG).

6.1 Transition probabilities for disease
progression and mortality

In order to estimate the long-term effects of treatments
or treatment strategies, themodeler simulates the under-
lying course and progression of disease. Data on the
natural course of the disease and its progression may be
derived from several sources, epidemiologic cohort
studies, registries, claims data, and other retrospective
databases. Under certain circumstances, short-term
progression data may also be derived from clinical trials.
Relative straight forwardmeasures are disease frequency
measures, such as prevalence (i.e., the proportion of in-
dividuals in a population who have the condition at a
particular time) and incidence (i.e., the risk of contracting
the disease or developing some new condition within a
particular time). However, the correct use of risk mea-
sures in themodel is essential for validmodel predictions.
One has to carefully differentiate and appropriately
transform the data if necessary to implement valid prob-
ability estimates for the transitions [152], [153].
In many instances, studies provide survival data and
Kaplan Meier curves. Those data can also be included
into a decision-analytic model. Methods of survival anal-
ysis can be applied to convert such data into rates to in-
clude them into a state transitionmodel, or fitted survival
curves can be used to populate a DES model [7], [17],
[18], [53], [54], [63], [64], [154], [155].
The risk of clinical events including mortality might be
increased by the presence of risk factors. Risk factors
can be taken into account by stratifying the cohort accord-
ing to the risk factors and estimating the event rates or
mortality rates as described above. However, many clin-
ical studies describe the influence of risk factors as rela-
tive risk, odds ratio or hazard rate. All of these estimates
can be superimposed on the baseline risk. However, the
impact of risk factors has been evaluated in a specific
study population that may differ from the modeled hypo-
thetical cohort. Techniques exist to standardize the esti-
mators to the cohort of interest.

6.2 Effects of intervention

The recommendation of the ISPOR Task Force 2003 [66]
on how to incorporate treatment effects into the model
is to derive estimates of relative risks or odds ratios and
superimpose these on baseline probabilities. This can be
done as it is described for the risk factors. However, the
literature does not always provide these estimates from
a head to head comparison. In these instances, indirect
treatment comparison meta-analyses of all studies may
be an option, where the effects are being pooled over
several studies. Studies that provide model input para-
meter values should be selected carefully.
If an intervention works through influencing a risk factor
(e.g., statins reduce cholesterol) then it is crucial that the
risk factor effect (e.g., relatives risks or odds ratios) can
be interpreted causally. Therefore, this risk factor effect
must be estimated with the appropriate causal inference
methods (e.g., controlling for confounding).
Another issue to consider when estimating the treatment
effect is the extrapolation of the effect beyond the time
horizon of the trials. Basically, four different assumptions
for the extrapolation of the treatment effects can be
made: (1) constant treatment effect, (2) diminishing effect
over time (“fade out”), (3) zero effect after end of study,
or (4) sudden drop to control arm (“stop and drop”). They
are shown in Figure 5. The choice of assumption should
be guided by the disease and the treatment.

6.3 Performance of diagnostic tests

For decision-analyticmodels that include diagnostic tests,
it is important to include the test performance character-
istics properly into the model [96]. As most tests are im-
perfect, and both false positive and false negative tests
may have their clinical consequences, it is important to
include the test accuracy into the model. The pretest
probability of disease is the probability of having the dis-
ease given the information prior to performing the test.
This might or might not be the prevalence. The posttest
probability of disease is the probability of having the dis-
ease, given all pretest and test information; it can be
calculated in several ways. The sensitivity is a test char-
acteristic that is often reported and is defined as the
probability of a positive test, given that the disease is
present. Specificity is defined as the probability of a
negative test, given that the disease is not present. In
contrast to dichotomous tests, multilevel or continuous
tests have more than two possible outcomes. In theory,
the test could be made dichotomous at each level, and
for each outcome the described test characteristics could
be calculated. To visualize the trade-off between sensitiv-
ity and specificity, a graph called receiver operating
characteristic (ROC) curve is shown. The graph shows the
relationship between test characteristics; that is, sensitiv-
ity is plotted against 1-specificity for each possible test-
result cut-off. At the extreme values, either sensitivity or
specificity are very high or very low (Figure 6).
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Figure 5: Extrapolation of treatment effects

Figure 6: Receiver operating characteristic (ROC) curve

6.4 Utilities

In the literature, several methods exist for measuring the
health-related quality of life (HRQoL). In decision-analytic
models, HRQoL is usually incorporated as utilities. A utility
is a global measure of the preference concerning a health
state, reflecting all aspects of the health state, measured
on a ratio scale and using the length of life as the metric
for measuring the preference [5], [156]. As HRQoL is also
depending on socioeconomic and cultural aspects in a
specific country, utility data retrieved from the literature
and transferred to another context should be treated with
caution. Therefore,most guidelines and recommendations

for good practice in cost-effectiveness modeling recom-
mend that utilities should be generated directly from
primary data using standard methods such as standard
gamble, time trade-off or preference-based generic instru-
ments [157].

6.5 Costs

Depending on the perspective and country of the analysis,
different types of costs must be included in the decision
model. Different HTA agencies published different guid-
ance on costing approaches to be used for cost-effective-
ness assessments [21], [22], [158].
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In general, the costs should be assessed following the
3-step micro-costing approach, that is, identification,
measurement, and valuation of resource use. However,
some instances might justify a gross-costing approach.
Only the value of those goods and services that change
because of the intervention should be considered. And
the prices used in the analysis should reflect the prevail-
ing prices in the location where the intervention is or will
be implemented. Opportunity costs are often well reflect-
ed in prices. Where this is not the case, adjustments
should be made. Wages are generally an acceptable
measure of time cost, while age- and gender-specific
wages should be used to best reflect the target popula-
tion. Unpaid services provided by volunteers or family
members should be estimated using hourly wages of a
corresponding individual that is working for pay.
All costs included into the analysis should be updated to
constant cost units, using the consumer price index and,
where appropriate, the medical component of it [97].
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