
Significance of EEG-electrode combinations while
calculating filters with common spatial patterns

Signifikanz von EEG-Elektroden-Kombinationen bei der Berechnung von
Filtern mittels Common Spatial Patterns

Abstract
Objective: Common spatial pattern (CSP) is a common filter technique
used for pre-processing of electroencephalography (EEG) signals for
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imaginary movement classification tasks. It is crucial to reduce the
Dirk Winkler3amount of features especially in cases where few data is available.
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used for CSP calculation are tried in this research.
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pared against the results of the approaches.
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Results: The most promising approach is to use the ability of CSP to
provide information about the origin of the created filter. An algorithm 2 University Leipzig,
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The results show that using subject specific electrode positions has a
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same subject. In addition to the combinations calculated using the de-
veloped algorithm, 26 additional electrode combinations are proposed.
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Oberlausitz, Zittau, Germanytrode combinations. In this research we could achieve an accuracy im-

provement of over 10%.
Conclusions: Carefully selecting the correct electrode combination can
improve accuracy for classifying an imaginary movement task.
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Zusammenfassung
Ziel: Common Spatial Patterns (CSP) ist eine gängige Filtertechnik, die
für die Vorverarbeitung von Elektroenzephalographie-Signalen (EEG)
zur Klassifizierung gedachter Bewegungen verwendet wird. Besonders
in Fällen, in denen nur wenige Daten verfügbar sind, ist es wichtig, die
Anzahl derMerkmale zu reduzieren. In dieser Forschungsarbeit werden
verschiedene Ansätze zur Reduzierung der Anzahl der für die CSP-
Berechnung verwendeten Elektroden untersucht.
Methoden: Frei verfügbare EEG-Datensätze werden für die Evaluierung
genutzt. Dazu wird eine einfache Klassifizierungspipeline bestehend
aus CSP und linearer Diskriminanzanalyse zur Klassifizierung genutzt.
Es wird eine Basislinie unter Nutzung aller Elektroden berechnet und
diese mit den Ergebnissen der verschiedenen Ansätze verglichen.
Ergebnisse:Der vielversprechendste Ansatz besteht darin, die Fähigkeit
von CSP zu nutzen, Informationen über den Ursprung des erstellten
Filters zu liefern. Es wird ein Algorithmus vorgeschlagen, der diese Fä-
higkeit ausnutzt und so wichtige Elektroden aus dem CSP extrahiert.
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Die Ergebnisse zeigen, dass die Verwendung von probandenspezifischen
Elektrodenpositionen eine positive Auswirkung auf die Genauigkeit der
Klassifizierungsaufgabe hat. Außerdem wird gezeigt, dass Elektroden-
kombinationen, die in einem Versuch gut funktionieren, nicht unbedingt
auch in einemanderen Versuch desselben Probanden gut abschneiden.
Zusätzlich zu den mit Hilfe des entwickelten Algorithmus berechneten
Kombinationen werden 26 weitere Elektrodenkombinationen vorge-
schlagen. Diese können bei der Auswahl gut funktionierender Elektro-
denkombinationen berücksichtigt werden. In dieser Arbeit konnten wir
damit eine Verbesserung der Genauigkeit von über 10% erzielen.
Schlussfolgerung:Die sorgfältige Auswahl der richtigen Elektrodenkom-
bination kann die Genauigkeit bei der Klassifizierung von einer gedach-
ten Bewegung verbessern.

Schlüsselwörter: Algorithmen, Elektroenzephalographie, Statistik

Introduction Material and methods
Common spatial pattern (CSP) is an algorithm which de- In this work two different approaches are proposed:
composes a signal into spatial patterns that are extracted • Approach 1: Check every possible combination on onefrommultiple classes. These are used to calculate spatial dataset, take the best combinations and try them onfilters that maximize the ratio of the variance of one class the other datasets (to see if some generalization is
to another [1], [2]. It can be utilized to decompose an possible).
electroencephalography (EEG) signal into components • Approach 2: Infer possible combinations for each
that separate different classes [1], [2], which in turn can subject in each dataset using the patterns from the
be used to control a brain-computer interface (BCI). BCIs base CSP calculation.
can be used to control different types of hardware and
software, such as wheel chairs [3] or an avatar in a virtual Another approach would be to try every possible combi-
reality environment [4]. Integration of BCIs into the reha- nation for each subject in each dataset and choose the
bilitation therapy of stroke patients is an ongoing research best one. Due to the high computational expense this
subject [5], [6]. approach is unfeasible and therefore was discarded.
Many variants of CSP exist and are still subject to re- To acquire the needed data we utilize the library “Mother
search [7], [8], [9]. As CSP is used to create signal-specific of all BCI Benchmarks” (MOABB) [12] as it contains inter-
filters; an interesting characteristic of CSP is the ability faces to different freely available BCI datasets. Only
to reveal information about the origin of the created filter. datasets that fulfill the following conditions were con-
This can be utilized to select important features or elec- sidered for the evaluation:
trodes for a specific subject [10], [11]. Wang et al. calcu- • All sessions in the dataset are recorded with at least
late the event-related desynchronization and readiness 90 Hz sampling rate.
potential using all electrodes and select only those elec- • The paradigm of the dataset contains at least a left-
trodes that havemaximum value based on the computed hand imagination and a right-hand imagination class.
CSPs [10]. Another approach is omitting channels where • The electrodes used for data acquisition contain at
the average of the CSP mixing matrix coefficients is less least the electrodes used in [13] (see Figure 1).
than a certain threshold and evaluate the remaining sig-
nals with the help of a neural network [11]. However, the Four datasets meet these conditions: Yi2014 with n=10
authors did not state the impact on the electrode reduc- [14], BCI Competition IV Dataset 2a (BNCI2014) with n=9
tion and did not compare it with other approaches. and 2 sessions per subject [15], Cho2017 with n=49
In this study, our objective is to identify improved elec- [16] and PhysioNet with n=109 [17].
trode combinations for classifying an imaginarymovement We use the EEG data from the datasets with the left-
(IM) task through the use of CSP. We aim to compare hand imagination and right-hand imagination classes
these combinations with CSP calculations incorporating (which consist of single finger or full hand movements).
all available electrodes. Subsequently we utilized a simple pipeline as shown in

Figure 2 containing: 1) a preprocessing step, where the
data is reduced to the specified electrodes and bandpass
filtered between 5 and 45 Hz, 2) predefined cross-valida-
tion splits, 3) calculation of the CSP filter for each split
and filtering the signal with it using a CSP implementation
fromMNE-Python [18], 4) a classification step with linear
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Figure 1: The electrode positions used for pre-evaluation
Figure by Wetzel et al. [13], licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/), and adapted from

Oxley [26], licensed under CC0 1.0 Universal (https://creativecommons.org/publicdomain/zero/1.0/)

Figure 2: Single pipeline for calculating the accuracy

discriminant analysis (LDA) and 5) the combination of
the accuracies to a mean accuracy.
Baseline: We perform a baseline calculation with the
pipeline utilizing all electrodes for each subject from the
dataset (BFull) as well as the pipeline with 16 electrodes
that are positioned as shown in Figure 1 (B16).
Approach 1: We consider only the 16 electrodes
leading to an amount of possible combinations of

. We choose to only use combinations

that contain at least 8 electrodes to have enough
features for LDA after the CSP filter, which results in

combinations. Further we decided to

use Yi2014 as base dataset as it is fast to calculate for
each combination. We run the pipeline for all combina-
tions on each subject of Yi2014. The percentage change
between the 16 electrode baseline accuracy (of Yi2014)
and each combination’s accuracy is calculated after-
wards. Last, we assess whether the expectation µ is sig-
nificant better over all subjects for each combination us-
ing a t-test with the following hypothesis:
(1) H0:µ≤0, Ha:µ>0 and α=5%
Significant combinations are used for processing the
other datasets.
Approach 2: We developed an algorithm to infer more
useful electrodes by using the CSP calculation from the
baselines. Therefore, we use the pattern p from the first

8 CSP components [the amount of components calculated
with CSP is the amount of electrodes, but we only consider
the first 8 as the latter are less significant] and select the
electrodes that fulfill the following condition:
(2) |ep– |>θ·σ(p)
where ep is the value of the electrode in the pattern p,
is the mean of all electrode values of the pattern, θ is a
predefined threshold and σ(p) is the standard deviation
of all electrode values of the pattern. In our experiments
we set θ=1.5. Figure 3 shows a visualization of the al-
gorithm.
We calculate the electrodes for each cross validation
split. The found electrode combinations (containingmore
than 2 electrodes) are then used to calculate the accuracy
for the subject and the combination with the highest ac-
curacy is furthermore compared against the baselines.
The complete pipeline is visualized in Figure 4.

Evaluation
To evaluate our approaches we perform Bayesian A/B
tests [19], [20]. We compare different variants against
the full electrode baseline (BFull). The used variants are:

• The 16 electrode baseline (B16)
• The best electrode combinations from approach 1 (A1)
• The per subject best electrode combinations using our
algorithm with 16 electrode base (Algo16)
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Figure 3: The 8 components of the baseline of one subject of Yi2014, with the selected electrodes for each component with
green border. The extracted electrode combination is Fz, FC1, FCz, CP3, CP1, CPz.

Figure 4: The complete pipeline for approach 2 to calculate the best electrode combination

• The per subject best electrode combinations using our
algorithm with full electrode base (AlgoFull)

• The per subject best electrode combinations of the
combinations from approach 1 (PSA1)

• The per subject best electrode combinations of the
combinations from approach 1 and our algorithm (both
bases) (Comb)

We use the beta distribution for our prior and posterior
distribution as we have dichotomic data.
Further we assume a priori that all variants perform better
than average so we set α=6 and β=4. However the prior
has a marginal effect due to the amount of samples
provided. Afterwardswe performaMonte-Carlo simulation
with n=10,000 for our variants and calculate the fraction
of each variant against the full electrode baseline. By
calculating the mean of these fractions we get a percen-
tual improvement against BFull.

Results
After testing all combinations on Yi2014, 26 remain as
significant over all 10 subjects from Yi2014. Applying
those combinations separately on the other datasets did
not lead to improvements of the accuracy compared to
BFull (see Table 1 and A1 in Table 2), whereas using only
the best of all 26 combinations for each subject individu-
ally increases the accuracy significantly (see PSA1 in
Table 2). Using the proposed algorithm improves accuracy
compared to BFull, but it is not as effective as PSA1 (see
Algo16 and AlgoFull in Table 2). Interestingly combining

the different approaches leads to an improvement of
more than 10% (see Comb in Table 2).
These findings are also visualized in Figure 5, which
shows the computed beta distributions of where the
samples are taken from for the percentual improvement
calculation.
As BNCI2014 contains 2 sessions per subject, we test
whether a good performing combination in one ses-
sion also improves the accuracy for the other session.
Figure 6 shows the result for subject 1 and 3. It is obvious
that a combination which works well for one session may
not perform equally well in another session.

Discussion
Our results show that using only specific electrodes has
the potential to increase the accuracy of an IM task
compared to using all electrodes (as also shown in [21]).
Reducing the amount to a predefined number of elec-
trodes (from all to 16) does not lead to better results. We
also showed that even for the same subject the calculated
electrode combination cannot be transferred to another
session. In summary, it can be seen that it is important
to calculate a well-performing electrode combination for
each session and subject so that the overall amount of
electrodes applied to the subject cannot be reduced, but
the evaluation speed and accuracy of an IM task can.
The proposed algorithm for determining good performing
electrode combinations can be used even in a clinical
setting, as it is fast to calculate and EEG tasks usually
need calibration anyway. Furthermore, we proposed
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Table 1: The combinations that where selectedwith approach 1 (and their p-values) and how often each combination is considered
the best across the different variants (Best on PSA1 and Best on Comb) as well as the performance against the full baseline
using each combination for all subjects (Accuracy improvement against BFull). Bottom lines show how frequently combinations

from our algorithm were selected on Comb.

Table 2: The performance of the different variants against BFull (Best bold)

26 electrode combinations that can be considered addi-
tionally for better performance. In summary, sophisticated
selection of the appropriate electrode combination can
enhance the accuracy of an IM task. In our research we
achieved an improvement of over 10%.
To further improve performance the algorithm to detect
electrode combinations could be revised or changed as
there are subjects where it performs worse. It was as-
sumed that this is due to a low amount of channels.
However, there is no correlation between the number of
channels and the percentage of change. Another step
could be to determine another set of well-performing

electrode combinations using the brute-force calculation
(approach 1) on another dataset and compare it to the
shown results.

Notes

Source code

The source code for this research is available at
https://gitlab.com/domwet/csp-research.git.
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Figure 5: The beta density functions for all variants over all subjects. The black lines (A1) show the beta distributions from the
26 selected combinations. The curve filled in blue is the baseline using all electrodes, which is also the base for comparison.

Figure 6: The percentage change using a combination compared to full baseline. Upper image is subject 1 and lower image is
subject 3 of the BNCI2014 dataset. One pair of blue and orange bars correspond to one electrode combination.

Datasets

The underlying datasets can be accessed as follows:

• Yi2014 [14]: https://doi.org/10.7910/DVN/27306
[22]

• BNCI2014 [15]: https://doi.org/10.21227/katb-zv89
[23]

• Cho2017 [16]: https://doi.org/10.5524/100295 [24]
• PhysioNet [17]: https://doi.org/10.13026/C28G6P
[25]
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