
Temporal loudness integration at threshold in cochlear
implant users: A study on the critical duration and the
effects of a very high stimulation rate

Lautheitsintegration an der Hörschwelle bei Cochlea-Implantat-Nutzern:
Eine Studie zur kritischen Dauer und den Auswirkungen einer sehr hohen
effektiven Stimulationsrate

Abstract
Detection thresholds (DTs) decrease with increasing stimulus duration.
This phenomenon is known as temporal loudness integration (TLI). In
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stimulus duration (tcrit) of approximately 200 ms (Heil et al. 2017,
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a higher stimulation rate (1.2 and 25 kpps) at two electrode positions
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phase duration) to 1.5 s long pulse trains were tested to determine the
critical duration tcrit above which DTs are independent of stimulus dura-
tion.
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observed. Critical durations in CI users (tcrit=244±136 ms) were similar
to critical durations in NH, and were independent of the electrode po-
sition and the stimulation rate. For two subjects, it was not possible to 2 Munich University of Applied
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(–6.2±0.9 dB/decade) than at 1.2 kpps (4.1±1.3 dB/decade). Surpris-
ingly, the TLI slope of CI users at high stimulation rates was comparable
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ones, despite the missing non-linear compression in the intact ear. The
stimulation rate influenced the steepness of the TLI curves, which in
turn affects the CI user’s perception of long and short sounds.

Keywords: loudness integration, cochlear implants, psychoacoustics,
critical duration, high stimulation rate

Zusammenfassung
Die sogenannte Lautheitsintegration (LI) benennt den Effekt, dass mit
zunehmender Dauer eines Reizes die entsprechendeHörschwelle sinkt.
Bei Normalhörenden (NH) verbessert sich hierbei die Hörschwelle um
6,7 dB/Dekade bis zu einer kritischen Dauer (tkrit) von 200 ms (Heil et
al. 2017, Zwislocki 1969). In dieser Studie wurde die LI von sieben
Cochlea-Implantat(CI)-Nutzern (MED-EL) an zwei Elektrodenpositionen
(apikal, basal) über Direktstimulation bestimmt, jeweils bei einer kli-
nischen und einer höheren Stimulationsrate (1,2 und 25 kpps). Hör-
schwellen bei Stimulusdauern zwischen einem einzelnen Puls (15 µs
Phasendauer) und bis zu 1,5 s langen Pulsfolgen wurden gemessen,
um die kritische Dauer tkrit zu bestimmen, ab der die Hörschwelle unab-
hängig von der Stimulationsdauer ist.
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Bei konstanter Stimulationsrate nahmen die Hörschwellen mit zuneh-
mender Stimulusdauer ab. ImMittel wurde kein Einfluss der Elektroden-
position auf die LI-Charakteristik festgestellt. Kritische Dauern von CI-
Nutzenden (tkrit=244±136 ms) ähnelten kritischen Dauern von NH und
waren unabhängig von der Elektrodenposition und der Stimulationsrate.
Bei zwei Probanden war es nicht möglich, eine kritische Dauer tkrit bei
25 kpps zu bestimmen. Die Steilheit der LI-Kurven war von der Stimu-
lationsrate abhängig: LI-Kurven waren bei 25 kpps steiler
(–6,2±0,9 dB/Dekade) als bei 1,2 kpps (–4,1±1,3 dB/Dekade). Es
überrascht, dass die LI Steilheit von CI-Nutzenden bei hohen Stimulati-
onsraten vergleichbar mit NH Werten war, obwohl die nichtlineare
Kompression im Innenohr bei elektrischer Stimulation fehlt. Daher
können die flachen LI-Kurven im elektrischenHören nicht ausschließlich
durch den Verlust der nichtlinearen Kompression erklärt werden.
Stattdessen beeinflusste die Stimulationsrate die Steilheit der LI-Kurven,
was sich wiederum auf die Wahrnehmung langer und kurzer Töne aus-
wirkt.

Schlüsselwörter: Lautheitsintegration, Cochlea-Implantate,
Psychoakustik, kritische Dauer, hohe Stimulationsrate

1 Introduction
Listeners perceive short stimuli quieter than long stimuli
at the same stimulus intensity. This effect is called tem-
poral loudness integration (TLI). Conversely, at the hearing
threshold, short stimuli require higher amplitudes than
long stimuli to be perceived. In normal hearing (NH), the
detection threshold (DT) drops by 6.7 dB upon a tenfold
increase in stimulus duration (decade) [1]. This improve-
ment in DT holds up to a critical duration tcrit of 200 ms
[2]; for longer stimuli, the DT becomes independent of
stimulus duration.
The effect of TLI has also been observed in cochlear im-
plant (CI) users [3], [4]. At a fixed stimulation rate, DTs
decrease with increasing stimulus duration, i.e., as the
number of pulses in a pulse train increases. However,
the improvement in DTs is significantly lower than in NH
(–1.4 dB/decade [3]). TLI has mainly been investigated
for single-channel stimulation rates between 300 and
3,000 pps (pulses per second) and stimulus durations
up to 300 ms [4], [5], [6]. Literature on TLI at longer du-
rations reported inconsistent results on a possible critical
duration in electric hearing. While in [3], critical durations
of around 100 ms were found only in some subjects, [7]
reported critical durations comparable to NH between
50 and 200ms, and [8] reported critical durations around
100 ms. Our study set out to find the slope and critical
durations for a clinically used single-channel stimulation
rate (1.2 kpps) and for a high stimulation rate (25 kpps).
Characterizing TLI curves at high stimulation rates is rel-
evant since the coding strategies activate multiple con-
tacts in quick succession. Systematically reviewing the
effects of an overall increased stimulation rate may lead
to improved coding strategies that provide normal-hearing
TLI characteristics and reduce the unpleasant loud distor-
tions known to be a common problem for CI users.
Due to the wide current spread in the cochlea when
stimulated with a CI [9], [10], [11], the effective stimula-

tion rate to which a nerve fiber is exposed can correspond
to the summed rate of several active electrodes. There-
fore, two stimulation rates were selected for this study:
(1) a single-channel HDCIS (High-Definition Continuous
Interleaved Sampling) stimulation rate of 1.2 kpps and
(2) a stimulation rate of 25 kpps. TLI was measured at
threshold in seven CI users at two stimulation rates
(1.2 kpps and 25 kpps) and two electrode positions
(apical and basal) using the adjustmentmethod. Stimulus
durations from a single pulse (15 µs phase duration) to
1.5 s long pulse trains were tested to determine the cri-
tical duration (tcrit) from which on DTs are independent of
stimulus duration.

2 Methods

2.1 Subjects and stimuli

Seven CI users (4 female, 3male, 8 ears) between 17 and
82 years (mean age: 59±21 years) participated in this
study. All subjects had MED-EL implants (products: Son-
ata, Synchrony, Pulsar, Concerto) and at least one year
of CI experience. Subjects gave their informed written
consent and receivedmonetary compensation. This study
was conducted in accordance with the Declaration of
Helsinki and approved by the medical ethics committee
of the Klinikum Rechts der Isar (Munich, 2126/08).
Stimuli programmed with MATLAB were sent directly to
the electrode array using MED-EL’s MAXBOX, bypassing
the speech processor. TLI was examined at two stimula-
tion rates (1.2 and 25 kpps) on an apical (E3) and a
basal electrode (E10 out of 12 electrodes in MED-EL CIs).
Stimuli were pulse trains of biphasic cathodic-leading
pulses with 15 µs phase duration and 2.1 µs inter-
phase gap. The duration of the pulse trains ranged from
a single pulse to 1.5 s (1,800 pulses at 1.2 kpps and
37,500 pulses at 25 kpps). There were 11 durations
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measured at 1.2 kpps and 15 durations at 25 kpps, in-
cluding the single pulse condition. The pulse train contain-
ing a single pulse was measured once and assigned to
both stimulation rates. During the experiment, the stimu-
lus repeated after a 500 ms pause.

2.2 Procedure

Subjects adjusted the stimulation amplitude to their DT
using a keyboard (adjustment method); stimulus amp-
litudes could be changed in fine and coarse steps. Sub-
jects familiarized themselves with the task during a single
training round. Four well-separated DTs (single pulse,
10 ms, 100 ms, and 1.5 ms), five at the higher rate
((single pulse), 1 ms, 10 ms, 100 ms, and 1.5 s), were
measured during training at both electrode positions. DT
estimates for the remaining durations were linearly inter-
polated in the log-log domain to speed up the measure-
ment time during the main experiment. Training trials
were not randomized; DTs were measured from the
longest to the shortest duration, one rate and one elec-
trode at a time.
The main experiment consisted of four repetitions of all
possible combinations: electrode x stimulation rate x du-
ration (50 conditions). Each round contained all 50 con-
ditions in randomized order. To minimize biases, DTs
were adjusted starting twice from below and twice from
above the DT amplitude [12]. If subjects did not request
a break before, breaks were programmed every 25 min.
Slopes and critical durations were estimated by fitting
the data to a broken stick curve of the form:

With I being the DT amplitude in CU (current unit, 1 CU
corresponds to approximately 1 µA), I1 the stimulus
amplitude for the single-pulse condition, N the number
of pulses, m the slope, Ncrit the critical duration in number
of pulses, and I∞ the asymptote value after the critical
duration has been exceeded. An exemplary fit for subject
S3 (25,000 pps, apical electrode) is shown in Figure 1.
On a double-logarithmic axis, power functions appear as
a linear dependency (see Figure 2). Power law fits have
already been used to describe NH [13] and CI data [5].
Fits worked well with R2=0.97±0.02 and R2=0.98±0.01
at 1.2 kpps for the apical and basal electrode, respec-
tively, and R2= 0.99±0.01 and R2=0.99±0.01 at 25 kpps.

3 Results
Figure 2 shows the DTs with regard to the DT amplitude
of a single pulse (SP DT) as a function of stimulus du-
ration. The black dotted line denotes NH TLI characteris-
tics [1], [2]. TLI was observed at both stimulation rates
and electrodes; DTs decreased with increasing stimulus
duration up to 244±136 ms and remained unchanged
at longer stimulus durations. On average, no systematic
effect of the electrode (apical, basal) was observed. In
contrast, TLI was affected by the stimulation rate; TLI

curves were steeper at the higher stimulation rate. At
1.2 kpps, DTs decreased with increasing stimulus
duration by 4.1±1.3 dB/decade up to tcrit=206±103 ms
(Figure 2, left panel). At 25 kpps, DTs improved by
6.2±0.9 dB/decade (tcrit=291±182) (Figure 2, right panel)
and resembled NH TLI (black dotted line). Neither the
electrode nor the stimulation rate affected the critical
duration. Increasing the stimulation rate from 1.2 kpps
to 25 kpps, which corresponds to increasing the number
of pulses within a fixed period of time, also decreased
DTs. Although related to TLI, this is a different effect
known as multi-pulse integration [4], [14].
TLI showed high intersubjective variability. TLI slopes
at 1.2 kpps ranged from –2.2 dB/decade (S1) to
–7.8 dB/decade (S8), the latter even exceeding slopes
reported in NH. Interestingly, S8’s slope did not increase
further at 25 kpps (–7.2 dB/decade). Slopes at 25 kpps
ranged between –4.6 dB/decade (S4) and –7.5 dB/de-
cade (S1). Except for S8, all subjects exhibited steeper
slopes at the higher stimulation rate, and five out of eight
subjects had slopes comparable to, or larger than, NH
values (>6 dB/decade). Critical durations were between
33 ms (S4) and 751 ms (S2). For two subjects (S5 and
S7), no critical duration tcrit<1.5 s could be determined at
the higher rate. Although, on average, the electrode had
no systematic effect on the TLI curves, S4 exhibited
shorter critical durations at the basal electrode position,
e.g., 352ms (apical, 1.2 kpps) compared to 33ms (basal,
1.2 kpps).

4 Discussion
The slope at which DTs improved with increasing stimulus
durations was –4.1±1.3 dB/decade at 1.2 kpps and
–6.2±0.9 dB/decade at 25 kpps. These slopes are larger
than the –0.42 dB per doubling of duration, equivalent
to –1.4 dB/decade, reported for a 100 pps stimulation
rate [3]. The slope for 1.2 kpps is similar, if not somewhat
higher, than the –3.5 dB/decade slope for 1.5 kpps
stimuli in [5]. The mean slope of –6.2 dB/decade at
25 kpps is fittingly higher than slopes found for 10 kpps
(–4.3 dB/decade [15]) and 18 kpps (–5.5 dB/decade
[5]). As reported by other studies [4], [5], [16], we also
observed highly intersubjective variable TLI slopes. Our
critical durations (1.2 kpps: 247±123 ms; 25 kpps:
292±182 ms) were comparable to, and higher than, val-
ues cited in the literature for electric hearing (100 ms
[3], [8]; 50–200 ms [7]) and NH (200 ms [2]). In agree-
ment with [5], [16], no systematic effect of the electrode
was observed on average. However, two subjects exhib-
ited noticeable differences between electrodes in accor-
dance with [3], [5], [14]. These differences within a single
subject might be explained by neuronal health at that
specific location, proximal to the stimulation site [4], [14].
Despite several studies suggesting that a central process
mediates TLI [8], [15], [17], [18], the integration of audi-
tory information seems to have important peripheral
processing components. It has been hypothesized that
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Figure 1: Fit for the temporal loudness integration (TLI) curve for S3 at threshold (25 kpps, apical electrode; R2=0.99). Detection
threshold (DT) plotted as amplitudes in CU (current unit, 1 CU is roughly equivalent to 1 µA). Stimulus duration in number of
pulses (upper axis) and corresponding duration in milliseconds (lower axis). The lower axis was cut to accommodate the single
pulse condition, for which a pulse train duration (in ms) cannot be assigned unambiguously. The vertical dotted line denotes

the critical duration Ncrit above which the amplitude remains unchanged (I∞).

Figure 2: Temporal loudness integration (TLI) at threshold (mean ± standard deviation, n=8). Detection threshold (DT) amplitudes
in dB re single-pulse detection threshold (SP DT) of the corresponding electrode. Stimulus duration in number of pulses (upper
axis) and corresponding duration inmilliseconds (lower axis). The lower axis was cut to accommodate the single pulse condition,
for which a pulse train duration (in ms) cannot be assigned unambiguously. The dotted line shows the average TLI in normal
hearing with a slope of 6.7 dB/decade and a critical duration of 200 ms. Top: Apical electrode. Bottom: Basal electrode. Left:

1.2 kpps. Right: 25 kpps.
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TLI slopes are influenced by the nonlinear compression
in the inner ear and, therefore, shallow slopes in hearing-
impaired listeners (2–3 dB/decade [19]) are due to the
loss of compression in the hearing-impaired ear [20]. It
is thus surprising that the TLI slopes at 25 kpps
(–6.2 dB/decade) are comparable to NH values
(–6.7 dB/decade), even though the nonlinear compres-
sion in the inner ear is missing in electric hearing. Even
more so, S8 had a slope of –7.8 dB/decade already at
1.2 kpps. Other factors affecting the steepness of TLI
slopes include the abnormally rapid increase in neural
firing rate with stimulus level [3], [17], [19], [21], rapid
and high adaptation to electrical stimulation [4], [21],
and neural health [4], [22].
Ourmeasurements provide new insights into how auditory
information is integrated in the auditory system, especially
for electrical hearing with a CI. Our data shows that, at
high stimulation rates, TLI curves in electric hearing are
similar to acoustic ones, despite the missing non-linear
compression in the intact ear. The stimulation rate influ-
enced the steepness of the TLI curves, which in turn will
affect the CI user’s perception of long and short sounds.
As the speech processor and its coding strategy also in-
fluence the TLI in CI users, it remains to be investigated
how the coding strategy affects TLI and whether steeper
TLI curves are beneficial for speech understanding, e.g.,
for detecting weak consonants of short duration (p, t, k).
Restoring natural TLI in CIs is essential for an accurate
loudness representation, particularly for the perception
of short, impulsive sounds, to avoid unpleasantly loud
stimuli.

Notes

Conference presentation

This contribution was presented at the 26th Annual Con-
ference of the German Society of Audiology and published
as an abstract [23].
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