
Hearing aids in the era of foundation models

Hörgeräte im Zeitalter der Grundmodelle

Abstract
The recent introduction of foundationmodels (FMs) has taken the world
by storm. Ranging from large language models (LLMs) to image and
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audio analysis and generation, FMs have introduced a new paradigm
Björn W. Schuller1,2,3,4in artificial intelligence (AI), one where practitioners transition from

standard supervised machine learning to prompting and in-context
learning. This has implications for hearing aid research, and specifically 1 CHI – Chair of Health

Informatics, Technicalfor the use of such models for noise attenuation and speech enhance-
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FM advances in an indirect way. We review these approaches in the
present contribution.

Zusammenfassung
Die jüngste Einführung von Grundmodellen (FMs) hat dieWelt im Sturm
erobert. Von großen Sprachmodellen (LLMs) bis hin zur Analyse und
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Generierung von Bild- und Audiodateien haben FMs einen Paradigmen-
wechsel in der künstlichen Intelligenz (KI) hervorgerufen, bei dem An-
wender vom herkömmlichen überwachten maschinellen Lernen zu
Textanfragen und kontextbezogenem Lernen übergehen. Dies hat
ebenfalls Auswirkungen auf die Hörgeräteforschung, insbesondere auf
die Verwendung solcher Modelle zur Geräuschunterdrückung und zur
Verbesserung der Sprachqualität. Obwohl die Anwendung von FMs in
diesen Kontext bisher minimal bis nicht existent ist, hauptsächlich
aufgrund der prohibitiven Rechenkomplexität der Modelle, gibt es
dennoch Möglichkeiten, von den Fortschritten durch FMs auf indirekte
Weise zu profitieren. Wir überprüfen diese Ansätze in dem vorliegenden
Beitrag.

Introduction
Hearing aids aim to compensate for hearing loss by pro-
cessing the input audio stream and manipulating it in
such away so as to partially recover lost hearing. While
recovering hearing covers multiple facets of the human
experience, such as being able to partake in conversa-
tions or enjoy music, recovering the ability to understand
human speech is understandably one of the main priori-
ties for hearing aid devices. Their key operating principles
leverage advances in a wide array of fields, from physics,
to electronics, (psycho)acoustics, digital signal processing
(DSP), statistics, and – increasingly – artificial intelligence
(AI) [1]. In particular, AI features prominently as a comple-
ment, or even substitute, to DSP components [2],
primarily the ones tackling noise reduction and attenu-
ation [3], [4]. In a new frontier, foundation models (FMs)
have appeared as a novel class of models in the broader
AI community [5], but have not yet found their way into
hearing aid research. Foundation models (FMs) differ

from traditional deep neural networks (DNNs) in that they
exhibit emergent properties, i.e., capabilities that they
were not explicitly trained to perform but that can be un-
covered through the successful use of prompting [6].
Prompts can be thought of as a mixture of cues and in-
structions provided to a model. Instructions pertain to
the task that should be solved; cues add additional con-
text that can be leveraged to improve performance. For
instance, a large language model (LLM) might be asked
to classify the sentiment of a target sentence (“The
weather is nice today.”). On top of the sentence to be
classified, the input query must be prefaced with an in-
struction (“Predict the sentiment of the following sen-
tence.”) and can be further constrained according to the
specifications of the user (“Predict the sentiment of the
following sentence. Select one from positive, negative,
neutral. Answer in one word.”).
Auditory FMs operate on similar principles as LLMs, albeit
with audio as a primary or secondary input [7]. Text
prompts now become audio prompts. The input may be
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Figure 1: Schematic overview of howmultimodal foundation models can be used in conjunction with hearing aids. The auditory
component of the FM continuously monitors the background audio, while the textual component receives user feedback. The
FM processes both types of inputs periodically and sends information to the hearing aid, which uses it to adapt its denoising

process.

an audio snippet while instructions are typically left as
text; this provides an intuitive interface for downstream
users. A typical application is audio manipulation (e.g.,
for denoising, inpainting, or voice transformation). The
input query corresponds to an [AUDIO] snippet, with
[AUDIO] symbolising a discretised and compressed rep-
resentation of the audio that needs to be manipulated
by the foundation model. This is then prefaced/followed
by a textual instruction and additional cues. For example,
the input may be: “The following audio consists of one
target male speaker and background music. Remove all
background music and keep all target speech intact.
[AUDIO].” Importantly, this interleaving between audio
and language (or even othermodalities) relies inmapping
all inputs to a joint embedding space that the FM can
process. Asmost existing off-the-shelf FMs are LLMs, this
is typically achieved by adding an audio module that
process the input [AUDIO], followed by amappingmodule
that translates the output of the audio module to the
space shared by text (i.e., tokens), and the entire prompt
is fed into an FM for further processing. Similarly, the
output is treated as an audio stream (and may or may
not be fed into additional audio modules for decoding).

Foundationmodels for hearing aids
Having reviewed the basic principles of FMs, we now turn
to the critical question of how they can be used in the
context of hearing aids. At first glance, computational
complexity is an obvious factor prohibiting their uptake.
FMs employ billions of model parameters [5], with
the “small” versions of those models typically featuring

7-billion parameters. Even at the most extreme level of
quantisation currently possible for AI models (4-bits), this
still results in 3.5 GB of memory just to load the model,
without accounting for the storage of intermediate com-
putations, or, indeed, the runtime to pass an input
through the model. Obviously, the deployment of such a
model in a hearing aid is a long time away. However, there
are ways to leverage FMs which circumvent the hardware
showstopper discussed above. The key insight lies in off-
loading those compute-intensive models to external
devices. Given the proliferation of smartphones and their
integration in the hearing-aid ecosystem, as well as the
emergence of new, distributed sensing paradigms like
“Auracast” [8], there are nowadays complementary
devices that can record and process audio with signifi-
cantly higher compute capabilities than hearing-aid
devices [9].
An overview of the process is shown in Figure 1. In a
nutshell, FMs are employed to do what they excel at –
general world understanding, which is then co-opted to
improve denoising performance. The key motivation for
using FMs like that is that the world is slowly-changing,
at least in the terms relevant for a hearing aid user.
Coupled with the fact that most people nowadays carry
a smartphone connected to the Internet, this allows for
offloading the running of the FM to a device outside the
hearing aid. This can relay the necessary information –
essentially a model of the surrounding environment –
from the FM back to the hearing aid, which can then
utilise that information to improve its signal processing.
While exotic at first glance, this procedure can enable us
to leverage the advances in FMs without waiting for ac-
companying improvements in hardware. In the next two
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sections, we conceptualise how that might become pos-
sible, beginning with an introduction of audio FMs, and
proceeding with a perspective on how they can be em-
ployed in hearing aid practice.
Naturally, running these models externally introduces an
additional latency that precludes online usage. However,
there lies immense potential in their ability to understand
the underlying environment even in an offline setting. In
particular, the ultimate goal of a hearing aid is hearing
loss compensation, which, when it comes to speech un-
derstanding, is partially achieved through speech enhance-
ment and noise attenuation. The latter is contingent on
the type of noise prevalent. Oftentimes, this noise is
quasi-stationary, as in the typical examples of babble
noise, restaurants, transportations, or music. These types
of noises change slowly – slowly enough that a large
foundation model only needs to sense them sporadically
(e.g., every few seconds or even minutes). They can be
applied on periodic recordings of the environment to
generate a detailed characterisation of it which can be
provided to the hearing aid and condition its denoising
algorithm.
Examples of this type of conditioning have already proven
successful for general speech denoising [10], whereby a
fingerprint of the background noise is used as additional
information to improve noise attenuation. This fingerprint
is processed by a separate encoder – which, in principle,
can be more complex than the main branch as it only
needs to be run rarely – and its output is used for the
conditioning of amain denoising network. While previous
works have used standard neural networks for this finger-
print encoder, performance can be largely improved by
relying on themore advanced class of FMs now available.
Similarly, this process can be used to enrol the target
speaker to be enhanced – a form of personalisation that
is well-known in the literature.
Beyond automatically understanding the background
audio type, however, FMs can be used to foster a more
intuitive and adaptive interaction with the user of the
hearing aid. As mentioned, auditory FMs can seamlessly
combine audio with linguistic queries – the latter can be
provided in real time by the user, who could dynamically
adjust the parameters of the hearing aid to match their
current need. We note that such “profiles” are already
available as part of smartphone apps that allow for the
configuration of a hearing aid – however, the use of de-
scriptive, natural language can provide amore timely and
granular adaptation, as well as introduce a trial-and-error
component, with the user iterating through queries.
In summary, we expect FMs to gradually make their way
into the next generations of hearing aids as supplements
that run on external devices. They have the capacity to
serve as a powerful sidekick to the speech enhancement
and denoising capabilities of hearing aids, thus paving
the way for better hearing loss compensation.
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