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Abstract
In modern molecular biology, the quantification of proteins, RNA, and
DNA is a standard procedure. Resulting in the generation of large data,
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researchers need appropriate tools for interpretation. A common
method for interpreting gene expression data is pathway enrichment
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browsing and analysis available at https://pharmebi.net. Here we
present a new analysis module for the website developed in JavaScript
that applies enrichment analyses to gene expression data. The analysis
has two methods for enrichment: Fisher’s exact test and modified
Fisher’s exact test. The modified test considers the order of the gene
expression data. Additionally, Bonferroni-correction, Dunn-Šidák correc-
tion, Holm-Bonferroni method, and Benjamin-Hochberg method are
implemented to reduce the false positive pathways. The analysis was
tested with the gene expression data of the first cluster described by
the analysis of Shin et al.
The result of Fisher’s exact test with corrected p-values (p<0.01) was
68 pathways. In contrast, the result of the modified Fisher’s exact test
was 104 different pathways. The pathway with the best p-value is
“Generation of secondmessengermolecules”. The results are presented
in multiple forms. The first is a table ordered by p-values. Secondly, a
bar plot with the log10(p-value) for all pathways provides a general im-
pression of the resulting pathways. Thirdly, a combination of heat map
and bar plot for all pathway gene combinations shows an overview of
how the genes are connected to the relevant pathways and with the
p-values beside it. Further, the input data was analyzed. The results are
presented as a pie chart and bar plot. The pie chart shows how many
of the input genes have a connection to pathways and how many do
not. The bar plot displays the number of enriched pathways the genes
appear in. The resulting pathways are well-fitting results for the gene
expression data. This analysismodule returns similar results compared
to other enrichment tools.
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Zusammenfassung
In der modernenmolekularen Biologie ist die Quantifizierung von Prote-
inen, RNA undDNA ein Standardverfahren. Für die daraus resultierenden
großen Datenmengen benötigen Forscher geeignete Instrumente für
die weiterführende Interpretation. Ein üblicher Ansatz zur Reduzierung
einer großen Genliste mit zugehörigen Expressionsdaten ist die soge-
nannte Enrichment Analyse.
Das Heterogeneous Pharmacological Medical Biochemical Network
(PharMeBINet) ist eine Neo4j-Datenbank in Kombination mit einer
Website zur Betrachtung und Analyse der Datenbank und unter
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https://pharmabi.net verfügbar. Hier präsentieren wir ein neues Analy-
semodul für dieWebsite, welches Enrichment-Analysen auf Genexpres-
sionsdaten anwenden kann und mit JavaScript programmiert wurde.
Um signifikante Pathways zu berechnen, werden der exakte Test nach
Fisher und eine modifizierte Variante des Tests verwendet. Der modifi-
zierte Test berücksichtigt die Reihenfolge der Genexpressionsdaten.
Außerdem werden die Bonferroni-Korrektur, Dunn-Šidák-Korrektur,
Holm-Bonferroni-Methode und die Benjamini-Hochberg-Methode ver-
wendet, um die Anzahl falsch positiver Pathways zu reduzieren. Als
Beispiel für einen Anwendungsfall wurden die Genexpressionsdaten
des Clusters 1, der Analyse von Shin et al., für die Enrichment-Analyse
verwendet.
Infolgedessen werden 68 verschiedenen Pathways für den exakten
Fisher-Test sowie 104 für den modifizierten Test mit dem angepassten
p-Wert (p<0,01) gefunden. Der Pathway mit dem besten p-Wert ist
„Generation of second messenger molecules“. Die Ergebnisse werden
als Tabelle sortiert nach p-Wert dargestellt. Zweitens vermittelt ein
Balkendiagramm mit dem log10(p-Wert) für alle Pathways einen allge-
meinen Eindruck der resultierenden Pathways. Drittens gibt eine Heat-
Map für alle Pathway-Genkombinationen einen Überblick darüber, wie
die Gene mit den relevanten Pathways verbunden sind. Außerdem wird
eine Analyse der Eingabedaten in einem Kreisdiagramm und einem
Balkendiagramm angezeigt. Das Kreisdiagramm zeigt, wie viele der In-
put-Gene eine Verbindung zu Pathways haben oder nicht. Das Balken-
diagramm zeigt die Anzahl der relevanten Pathways, in denen die Gene
erscheinen. Die resultierenden Pathways passen gut zu den eingegebe-
nen Genen. Auch im Vergleich zu anderen Enrichment-Tools haben sie
ähnliche Ergebnisse.

Schlüsselwörter: Pathway-Enrichment-Analyse, heterogene Datenbank

Introduction
In recent years, the improvements of high-throughput
technologies for Omics experiments produce more data
sets for analysis [1], [2], [3]. Consequently, the challenge
is to interpret these data for a better understanding of
diseases or a given phenotype [1], [4], [5], [6]. The most
common outputs are gene expression profiles which are
compared to examine the changes in gene expression
between different test groups [5]. A standard analysis
method on such data is the statistical enrichment with
pathways, molecular functions, or biological processes
[7]. There are various algorithms to compute enrichments
which can be divided into over-representation analysis
(ORA) [8], functional class sorting, and topology-based
methods [9]. Unfortunately, no standard method or pre-
ferred category exists as such but ORA and functional
class sorting methods are utilized in many publications
[1], [2], [9].
Currently, a lot of different pathway databases exist like
Kyoto Encyclopedia of Genes and Genomes (KEGG) [10],
Reactome [11], WikiPathways [12], and PathBank [13].
Every pathway database has its focus and applications.
The choice of pathway databases influences the results
of enrichment [14]. That is the reason why recently the
usage of multiple pathway databases or a merged path-

way database became more prevalent [14], [15], [16],
[17].
Here, a new tool of PharMeBINet’s web application is in-
troduced allowing users to perform pathway enrichment
analysis and investigate results in multiple ways. In
PharMeBINetmultiple pathway databases are connected
and used for enrichment. For the enrichment analysis,
two methods of the Fisher’s exact test are used, the
standard Fisher’s exact test and a modified version of
the Fisher’s exact test, which considers the ranking of
the gene set. Four correction approaches for multiple
testing are available to the user controlling the rate of
false positives. The results are visualized as bar plots,
heat map, and pie chart. The tool is available at
https://pharmebi.net/#/analysis/enrichmentanalysis.

Methods
In the following, the development of the website is de-
scribed as well as the databases utilized for the enrich-
mentmethods. The implemented enrichment and correc-
tion methods are explained. Afterward, a short explana-
tion of how to use the website and analysis module is
described as well as the use-case for comparison.
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Implementation of PharMeBINet

The web application is divided into frontend and backend.
Vue.js 2.6.11 [18], an open-source JavaScript framework
for user interfaces, generates the frontend. For the design
of Vue, the library Vuetify 2.6.2 [19] is used intending to
create intuitive and reliable user interfaces based on
material design. Echarts 5.3.2 [20] generates different
graphics and charts on the webpage. Node.js v14 LTS
[21] is an open-source JavaScript framework which forms
the backend. It communicates with the Neo4j database
utilizing the library Neode 0.4.8 [22], a Neo4j object graph
mapping (OGM) which takes care of creating, reading,
updating, and deleting (CRUD) operations on data in the
database. The communication between frontend and
backend is implemented using Axios 0.27.2 [23], an open-
source JavaScript library for HTTP requests.

Structure of the PharMeBINet database

The backend utilized the heterogeneous Neo4j database
PharMeBINet [24]. Pathway information is derived from
Comparative Toxicogenomics Database (CTD) (version
2022-04) [25], Pathway Commons (version 12) [26],
Reactome (version 2022-03-31) [11], and WikiPathways
(version 2022-04-10) [12].
The databases Pathway Commons and WikiPathways
provide gene-pathway relationships. However, Pathway
Commons is filtered for information with compatible li-
censes before integration. Reactome’s pathway informa-
tion is mapped via Reactome identifier and name. Re-
actome pathways that do not map to Pathway Commons
or WikiPathways are added as new nodes. CTD is mainly
used to fill up additional gene-pathway relationships.
Gene information is derived from Entrez Gene [27]. The
resulting database contains 3,689 different pathway
nodes extracted from four databases.

Implementation of pathway enrichment
analysis into PharMeBINet

Fisher’s exact test is a common ORA method utilized for
the pathway enrichment analysis [1]. A list of candidate
genes is tested for over-representation in a list of genes
connected to a given pathway. Fisher’s exact test calcu-
lates the statistical significance between the genes of
interest and the genes of a pathway. The null hypothesis
for each pathway is that a special set of genes is not over-
represented in comparison to all genes of the pathway.
For this, a contingency table (Table 1) is utilized where N
is the number of genes in the input list, n is the number
of genes connected to the pathway, andM is the number
of all genes.
The p-value is computed by the hypergeometric distribu-
tion:

For the right-tailed test, the p-value is computed with
Pr(x≤k). The input list is significantly over-represented in
a given pathway if the p-value falls below a threshold,
typically set to p<0.05. The repeating calculation of
Fisher’s exact test on different pathways increases the
possibility for false-positive results [28], [29]. For this
problem,multiplemethods to control the type I error have
been developed like Bonferroni correction (BC), Dunn-
Šidák correction (DS-correction), Holm-Bonferronimethod
(HB-correction), and Benjamini-Hochberg procedure (FDR-
correction) [28], [29]. Dunn-Šidák and Bonferroni correc-
tion adjust the threshold with a number of tests [29]. In
contrast, for the Benjamini-Hochberg procedure and the
Holm-Bonferroni method the p-values are ordered and
assigned a rank. Consequently, the threshold is changed
by the number of tests and depending on their rank [28],
[29].
Usually Fisher’s exact test does not take the ranking of
genes into account [15]. However, g:Profiler [15] de-
veloped an algorithm applying Fisher’s exact test on an
ordered gene list. First, the gene list is ordered, for ex-
ample, by fold-change. For each prefix sublist of the
ordered gene list with length ≤N the algorithm computes
the intersection x to the genes of a pathway as well as
the p-value. Afterward, theminimal p-value and respective
prefix are returned.
Additionally, the size of expected overlap by chance is
calculated by considering the amount of genes from a
given pathway compared to the background genes and
multiplied by the number of genes in the input list. The
fold-enrichment value is computed by dividing the overlap
of genes between the pathway and the input list through
the expected overlap by chance.

The general usage of enrichment
analysis

Not only genes can be utilized as input in the new
PharMeBINet analysis module, but also diseases and
chemicals (see Figure 1). The tool can perform enrichment
analyses for pathways, diseases, chemicals, biological
processes, cellular components, molecular functions,
and genes. First, the threshold for rejecting the null hypo-
thesis can be set manually. Secondly, it can be selected
if the threshold is used on the raw p-value or the corrected
p-value. Thirdly, four different correction methods can be
selected. It is possible to use multiple corrections at the
same time. A pathway passes the threshold if at least
one of the selected correction methods is below the
threshold. Lastly, it is possible to select the background
value from the database or to define a custom value. The
background from the database is defined as the number
of nodes from the input label connected to the enrichment
label.
The right side of Figure 1 shows the possibilities for input
data. Genes, diseases, and chemicals can either be put
in using a text field or by uploading a tab-separated values
(TSV) file with or without a header. For both methods, the
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Table 1: The contingency table for Fisher’s exact test

Figure 1: The graphical user interface on the website of PharMeBINet shows the general overview of all options.

first column represents an identifier field and the second
column has some kind of weight. For genes, theseweights
could, for example, represent the fold-change.

Use-Case for pathway enrichment
analysis of PharMeBINet

Shin et al. [30] took 63 samples from 62 patients with
cutaneous T-cell lymphomas (CTCL) to analyze the gene
expression profile. CTCL represents a subset of the non-
Hodgkin lymphomas, with T-cell lymphomas present in
the skin [31], [32]. They analyzed samples from patients
with cancer stages IA, IB, IIB, and III. The expression re-
sults are clustered using hierarchical clustering and self-
organizing maps, from which three unique clusters are
extracted. A unique selling point is that the first cluster
contains patients from all stages of cancer. Additionally,
the authors performed pathway enrichment on the first
cluster. This is why upregulated genes of this cluster 1
(see Table 2) are chosen for testing the pathway enrich-
ment analysis presented here.

Results
For the given gene expression data of upregulated genes
of cluster 1, PharMeBINet finds 68 different pathways
(Attachment 1) of which the top fifteen are shown in
Table 3. The most significant pathway is “Generation of
second messenger molecules” with an adjusted p-value
of 2.858e-13 and a fold-enrichment of 57.25. Conditions
of the previous study are applied to this data set in which
only pathways are considered which contain at least
5 genes [30], reducing the result to 45 different pathways.
The enrichment with the modified Fisher’s exact test for
ranked genes returns 104 different pathways shown in
Attachment 2. The most significant pathway is “Genera-
tion of second messenger molecules” too, but the adjus-
ted p-value is better with 9.526e-14 and fold-enrichment
of 61.57. The better values are because only the first 53
inputs were considered. Additionally, the top fifteen of
the Fisher’s exact and themodified version are the same
but some are ranked differently. Moreover, with the con-
dition to have at least five genes in overlap with the input
list only 57 pathways are left.
In addition to the tabular demonstration of the path-
way enrichment, there is a graphical visualization. A
bar plot (Figure 2 and Attachment 3) shows the
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Table 2: Gene cluster 1 is generated by hierarchical clustering and self-organizing maps. This cluster contains patients
from all stages and is used for producing pathway enrichment [30].

–log10(p-value) for the raw p-values and the different
corrected (BC, FDR-, DS-, HB-correction) p-values for each
pathway. It is possible to zoom in and out with the slide
bar. The bar plot demonstrates that the BC is the strictest
correction. In contrast, the FDR-correction is the least
strict. However, the p-value is strongly reduced by each
correctionmethod. The FDR-correction demonstrates that
with increasing rank the distance to raw p-values is de-
creased. Also, the black dashed line defines the threshold.
The last ten pathways are only considered due to the
FDR-correction.
Another visualization is a combination of a heat map and
bar plot as demonstrated in Figure 3 and Attachment 4.
Each line represents a pathway and the heat map high-
lights the gene from the input list which is connected to
this pathway. The bar shows the –log10(p-value) of the
pathway. A slide bar makes it possible to zoom in and out
of the heatmap. The pathway “Immune System” includes
the most genes from the input list but does not have the
best p-value.
Further, a bar plot visualizes the input genes and their
count of enriched pathways as seen in Figure 4 and At-
tachment 5. It demonstrates that some genes do not
appear in any of the enriched pathways. In contrast, the
gene LCK appears in 37 and in the modified Fisher’s ex-
act test in 52 different enriched pathways.

Another statistic is shown in Figure 5, demonstrating how
many genes are in the input and how many have at least
one connection to any pathway in PharMeBINet. The input
lists consist of 62 different genes for this example and
5 have no connection to any pathway connection. The
genes without any connection are POU2AF1, C1orf68,
PSORS1C2, TRA@, and EVI2B.

Discussion
In the following, the results are compared and discussed.
First, the results of the PharMeBINet enrichment analysis
for the use-case are compared with the published results
as well as the resulting pathways validated for CTCL. The
results are compared between the standard and the
modified Fisher’s exact test and also between the differ-
ent correction methods. Afterward, the results are com-
pared with results from other available enrichment tools
as well as their provided result visualizations.
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Table 3: The top fifteen pathways from pathway enrichment for the gene cluster one for Shin et al. [30].
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Figure 2: The figure demonstrates the p-values of the different enrichment pathways with –log10 of the p-value from the
Fisher’s exact method.

Comparison to the pathway enrichment
analysis of Shin et al.

PharMeBINet’s pathway enrichment analysis finds 68
relevant pathways for gene cluster 1. The 15 best hits
mainly fit the “T cell receptor signaling pathway” (rank 5,
6, 10, and 13) and “T cell activation” (rank 11 and 12)
comparable to the analysis of Shin et al. [30]. According
to these pathways, “generation of second messenger
molecules” (rank 1) is detected which is a specific part
of the TCR-signaling in H. sapiens. Not only specific
pathways are found but also the “immune system path-
way” (rank 4) and “inflammatory response pathway” (rank
19), which represent both more general pathways and
both contribute to the phenotype of CTCL. After TCR ac-
tivation, naive CD4- T-cells differentiate into one of various
T helper cells like Th17 cells [33]. In the Th17 cell differ-
entiation pathway (rank 2), Th17 cells are required for
immune responses to various extracellular bacteria and

fungi. In CTCL, mycosis fungoides is the most common
type. So, this suits genes that are highly expressed in this
tissue. These cells produce Interleukin (IL)-17 among
others, which describes a pathway Shin et al. found in
their pathway-enrichment analysis. Not only similar results
are found in terms of content, but also much more rele-
vant pathways than in the analysis of Shin et al., which
is due to the higher number and specificity of pathways.
In PharMeBINet 3,689 pathways are included from three
databases, whereas Shin et al. considered six databases
with 408 pathways.
Some of the enriched pathways are opposites of each
other like “PD-1 signaling” and “Cancer immunotherapy
by PD-1 blockade’”. The PD-1 blockade pathway is the
pharmacological treatment of cancer by immunothera-
peutic inhibition (such as Cemiplimab) of reactions in the
“PD-1 signaling” pathway.
Multiple enriched pathways are part of inflammatory
processes of the immune system. As T-cells play an im-
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Figure 3: The heat map component of the visualization represents which genes in the input list are connected to which
of the enriched pathways. A bar plot on the right shows the –log10(raw p-values) for each pathway. Here, the result of

Fisher’s exact test is shown.
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Figure 4: Bar plot for each input gene the number of enriched pathways in which the gene appears. Here, the result of
Fisher’s exact test is shown.

Figure 5: Pie chart of the gene input list. The total number is shown on the top. Five genes of the input list are not
connected to pathways (green part). 57 have at least a connection to a pathway (blue part).

portant role in the immune system response, the inclusion
of pathways involving T-cells like “T-cell activation SARS-
CoV-2” and pathways involving T-cell receptor CD4 like
“Binding and entry of HIV virion” in the results are to be
expected.

Comparing Fisher’s exact test and modified
Fisher’s exact test

The three best pathways of both results are equal, how-
ever, the p-values, fold enrichments and the numbers of
nodes expected by chance are different. This difference
occurs due to the use of a prefix sublist in the modified
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test changing the value for N. However, the top 15 path-
ways of both enrichment tests are the same although
their order, p-values, the number of nodes expected by
chance, and the fold enrichments are different (see
Table 3 and Attachment 2). This is caused by the different
prefixes of the input list by the modified Fisher’s exact
test to get the best p-value and results in some genes of
the input list not being considered even though they ap-
pear in the pathway. An example of this is the pathway
“Innate Immune System” PC12 4895. In Fisher’s exact
test it has an overlap of 15 genes but in the modified
version the overlap is only 14. In the modified version
only the first 47 genes are considered so the gene PTPRC
from position 54 is not considered (see Attachment 1,
Attachment 2, Attachment 4, and Figure 3).
The pathway “Wnt signalling” is only part of the modified
enrichment result. In the paper Shin et al. the association
between the input gene and the pathway is described.
This underlines that the modified Fisher’s exact test re-
turns additional useful pathways.
The number of results for Fisher’s exact test andmodified
Fisher’s exact test would be nearly the same if the FDR-
correction is not used. The number would be 40 for
Fisher’s exact test and 43 for the modified test. This
demonstrates that the other corrections reduce the
number of results drastically for both enrichment meth-
ods.

Comparison of different correction methods

For the enrichment analysis, four different correction
methods are implemented: BC, DS, HB, and FDR. BC is
the strictest correction of the four (see Figure 2 and At-
tachment 3). This is caused by the fact that the family-
wise error is below the given threshold [34]. In contrast,
it increases the type II error filtering out significant path-
ways. The DS- and HB-correction are less strict than BC;
however, for this example data set all three surpass the
threshold for the same pathways (see Attachment 1, At-
tachment 2, and Attachment 3). The loosest correction
is the FDR-correction which results in 28 additional
pathways for the Fisher’s exact test and 61 for the modi-
fied test.
“Measles virus infection” is the first pathway that is only
included because of the FDR-correction. The paper Künzi
et al. [35] shows that the use of the measles virus is a
possibility to treat cutaneous T-cell lymphoma. This
demonstrates that the pathway “Measles virus infection”
is associated with cutaneous T-cell lymphoma and asso-
ciated with the input list.
“T cell receptor and co-stimulatory signalling” is the first
pathway of the modified Fisher’s exact test result where
only the FDR-correction value is under the threshold. This
pathway is similar to the pathway “T cell receptor signaling
pathway”, which belongs to the top enriched pathways
and is a good significant pathway for the input list.
Another pathway that belongs to both results but is only
included because of the FDR-correction is “IL2”. IL-2 plays
a role in cutaneous T-cell lymphoma [32]. This demon-

strates that many of the enriched pathways are only ac-
cepted because the FDR-correction is still significant.

Comparison to other pathway
enrichment tools

For comparing the results of PharMeBINet with other
enrichment tools the same gene list is submitted to
g:Profiler [15], ToppGene [36], DecoPath [16], Panther
[37], and Enrichr [38]. If possible the threshold is set to
0.01 or manually filtered to have similar start conditions.
Table 4 shows the number of enriched pathways returned
for which enrichment method, database, and correction
method.
Panther returns the lowest number of pathways for the
input list. It is tested with Fisher’s exact test and binomial
test with the FDR-correction. Both combinations return
only three different pathways which are included in both
PharMeBINet enrichments, as well (see Table 4).
The next tool is g:Profiler which uses three different
databases KEGG, Reactome, and WikiPathways with
modified Fisher’s exact test and a custom correction
method g:SCS threshold [15]. Each database returns its
own pathways. The enrichment pathways fromReactome
and WikiPathways are in the enrichment results of
PharMeBINet. In contrast, four of the KEGG enrichment
pathways are not in the PharMeBINet results (see
Table 4).
Enrichr uses Fisher’s exact test and the FDR-correction
for multiple databases. Only the latest databases are
utilized for the comparison: WikiPathways 2021 and
KEGG 2021. The number of enriched pathways is higher
than the number of g:Profiler. This may be because of
the different database versions and/or because of the
different correctionmethods. Not all WikiPathways 2021
results are included in the PharMeBINet results which
may also be caused by the different database versions.
The overlap between KEGG 2021 and PharMeBINet is
low as seen in Table 4.
DecoPath uses Fisher’s exact test and FDR-correction in
combination with the databases KEGG, Reactome,
WikiPathways, PathBank, and their own DecoPath data-
base. The returned enrichment pathways are grouped by
their respective database as in the other tools. This
causes some pathways to appear multiple times from
different databases and the reason why in Table 4 the
number of common pathways is split into common path-
ways from PharMeBINet and common pathways from
other databases such as DecoPath. More than half of the
pathways of DecoPath appear in the PharMeBINet results
and themodified Fisher’s exact test has a greater overlap
than the Fisher’s exact test.
The last tool, ToppGene uses Fisher’s exact test, FDR-
correction, and multiple databases KEGG, MSigDB C2
BIOCARTA, BioCyc, Reactome, GenMAPP, Pathway Inter-
action Database, PantherDB, Pathway Ontology, and
SMPDB. Also, like in DecoPath, all database results are
in a single table increasing the number and causing the
appearance of duplicated pathways. The overlap from
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Table 4: This table demonstrates the number of results of the different enrichment tools
and compares different online enrichment tools.
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ToppGene to PharMeBINet Fisher’s exact test is high and
nearly all pathways are included in PharMeBINet results.
The overlap to the modified Fisher’s exact test is even
higher as the test returns more pathways.
In total, the results of PharMeBINet enrichment are on
par with other tools. It does not yet include all pathways
so a logical next step is to add more pathway databases
such as KEGG.

Comparison of result presentation

Panther and ToppGene only provide table representations
for the enrichment results. These tables are similar to
the table of PharMeBINet.
Enrichr provides a tabular representation as well but also
a log bar plot of the p-values/combined score rank/rank
value for the top ten results. Additionally, it has a heat
map for the top 30 enriched pathways with an additional
bar plot in the graphic with log p-values/combined score
rank/rank value. It is similar to the heat map and bar plot
illustration of PharMeBINet. In contrast, in PharMeBINet
all pathways are shown. However, Enrichr has additional
plots on Appyter.
DecoPath also provides a tabular representation of the
resulting pathways. Additionally, a pie chart shows the
number of pathways which are concordant (multiple
databases say it is significantly enriched), no mapping
(pathways that are not mapped), and discordant (multiple
databases say opposites). An additional table shows the
pie chart’s information. This representation is unique.
The last plot of DecoPath is a pathway hierarchy that
highlights the significant pathways. This is a unique plot
as well.
g:Profiler provides a Manhattan plot and a combination
of table, log bar plot, and heat map. This tool has some
plots in common with PharMeBINet but includes some
unique plots, too.
However, none of them shows a graphical representation
of how many of the genes are used or not. They only
represent this in text form. Additionally, the last bar plot
in PharMeBINet is unique, showing the number of en-
riched pathways the genes appear in.

Conclusion
Here, we present a new enrichment analysis module for
the PharMeBINet website. It allows setting different
parameters manually. The pathway enrichment for the
use-case retrieved good results for Fisher’s exact test
andmodified Fisher’s exact test. Multiple figures visualize
the results of the enrichment analysis. Not only the ranks
of the pathways are shown but also the overlap of genes.
Additionally, a diagram shows how many genes have no
connection to a pathway. Furthermore, a bar plot
demonstrates the number of enriched pathways each
gene appears in. The enrichment already returned good
results and got similar results in comparison to other
online tools. However, the enrichment analysis could be

improved if more pathway databases are considered.
Further, it would be a good idea to add other enrichment
algorithms than Fisher’s exact test as other methods are
often used in research analyses as well.
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1. Attachment1_mibe000243.csv (14 KB)

Contains all enriched pathways for the Fisher’s exact
test.

2. Attachment2_mibe000243.csv (20 KB)
Contains all enriched pathways for the modified
Fisher’s exact test.

3. Attachment3_mibe000243.png (227 KB)
Demonstrates the p-values of the different
enrichment pathways with –log10 as the bar plot
of the p-value from the modified Fisher’s exact
method.

4. Attachment4_mibe000243.png (380 KB)
Presents for each enriched pathway the genes of
the input list which take place in the pathway in the
heat map for each enriched pathway. Additionally,
at the end of the line the –log10 (raw p-value) is
demonstrated as a bar plot. These are the results
of the modified Fisher’s exact test.

5. Attachment5_mibe000243.png (42 KB)
Bar plot for each input gene the number of enriched
pathways in which the gene appears. This is the
result of the modified Fisher’s exact test.
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