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Abstract
Background: Transcriptional changes are hallmarks of development
and disease. RNA sequencing (RNA-seq) allows qualitative and quantit-
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aged in order to enhance result reproducibility, to establish best data
analysis practices, and to share such data analysis workflows. In this
work, we created RNA-seq data analysis workflows in three WFMS, 2 Department of Genetics,
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Methods: These tools were compared using a variety of criteria ranging
from installation to workflow execution and sharing. Four different
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offers the most intuitive visualization. KNIME lags behind in these two
aspects but excels at other levels, such as machine learning.
Results: Since we already decided on the three WMFS, many of the
criteria we suggest for WFMS evaluation do not apply to our situation
and we focus on theWF creation here. While it was possible to construct
RNA-seq analysis WFs with all three WFMS tools, the constructed WFs
are different. These differences entailed disparate results, which were
further sensitive to processing settings leading to different biological
interpretations in the worst case. We further performed an in-depth
analysis of challenges using the three WFMS and provide decision
support for which WFMS to use in RNA-seq analysis. In short, RNA-seq
is currently best performed using Galaxy, followed by CLC, and KNIME.
The level of expertise with these WFMS should be taken into account
during the WFMS selection. Finally, we share the WFs in the hope of
reducing the use of ad hoc scripts and that sharing them will lead to
the development of best practices for RNA-seq data analysis.
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Zusammenfassung
Hintergrund: Transkriptionelle Veränderungen sind Kennzeichen von
Entwicklung und Krankheit. RNA-Sequenzierung (RNA-seq) ermöglicht
die qualitative und quantitative Analyse der RNA-Expression. Rohdaten
von RNA-seq durchlaufen typischerweise eine mehrstufige, computer-
gestützte Pipeline, um aus solchen Messungen eine Bedeutung abzu-
leiten. Oft werden dafür Ad-hoc-Skripte verwendet. Allerdings sollte die
Verwendung von Workflow-Management-Systemen (WFMS) gefördert
werden, um die Reproduzierbarkeit von Ergebnissen zu verbessern,
bewährte Datenanalyseverfahren zu etablieren und solche Workflows
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zur Datenanalyse zu teilen. In dieser Arbeit haben wir RNA-seq Daten-
analyse-Workflows in drei WFMS erstellt, namentlich: Galaxy (kostenlos,
Open Source), KNIME (kostenlos, kommerziell und teilweise Open
Source) und CLC (kommerziell, Closed Source).
Methoden:DieseWerkzeugewurden anhand einer Vielzahl von Kriterien
verglichen, von der Installation bis zur Ausführung und Freigabe von
Workflows. Vier verschiedene Workflows zur RNA-seq Datenanalyse
wurden in allen drei WFMS erfolgreich erstellt. Zusammenfassend bietet
Galaxy derzeit die größte Anzahl an Analysetools für RNA-seq, während
CLC die intuitivste Visualisierung bietet. KNIME hinkt in diesen beiden
Aspekten hinterher, glänzt jedoch auf anderen Ebenen, wie z.B. dem
maschinellen Lernen.
Ergebnisse: Da wir uns bereits auf die drei WFMS festgelegt haben,
sind viele der von uns vorgeschlagenen Kriterien für die Bewertung von
WFMS in unserer Situation nicht relevant, und wir konzentrieren uns
hier auf die Erstellung von Workflows. Obwohl es mit allen drei WFMS
möglich war, RNA-seq Analyse-Workflows zu erstellen, sind die erstellten
Workflows unterschiedlich. Diese Unterschiede führten zu unterschied-
lichen Ergebnissen, die bei unterschiedlichen Verarbeitungseinstellun-
gen in schlechtesten Fällen zu unterschiedlichen biologischen Interpre-
tationen führten. Wir haben zudem eine eingehende Analyse der Her-
ausforderungen mit den drei WFMS durchgeführt und Entscheidungs-
unterstützung für die Auswahl des richtigenWFMS für RNA-seq Analysen
bereitgestellt. Kurz gesagt, wird RNA-seq derzeit am besten mit Galaxy
durchgeführt, gefolgt von CLC und KNIME. Der Kenntnisstandmit diesen
WFMS sollte bei der Auswahl berücksichtigt werden. Wir teilen die
Workflows, die wir erstellt haben, in der Hoffnung, den Einsatz von Ad-
hoc-Skripten zu reduzieren und die Entwicklung bewährter Verfahren
für die RNA-seq Datenanalyse zu fördern.

Schlüsselwörter:RNA-Sequenzierung, RNA-seq, Datenanalyse-Workflow,
Workflow-Management-System

Introduction
Diseases can often be tied to the dysregulation of gene
expression, which can be experimentally quantified using
RNA sequencing (RNA-seq) [1]. RNA-seq also enables the
detection of novel alternative splicing variants, which was
not possible with hybridization technologies [1]. While
RNA-seq experiments can have various goals and proto-
cols [2], one of the most common is the quantification of
gene expression levels among different conditions as, for
example, done for tomato under different watering re-
gimes [3]. Raw RNA-seq data needs to be processed
computationally and for that purpose passes through a
multi-step computational analysis pipeline using bioin-
formatics tools [2], [4]. Spjuth et al. previously interviewed
several research groups about their experiences with
workflow management during the SeqAhead hackathon
and found that often ad hoc scripts are developed to
automate the overall workflow [4]. Such idiosyncratic
works may be hard to understand, reuse, and may not
reproduce the results in different environments. A slight
improvement over such scripts is the use of more struc-
tured make-files, for example, SnakeMake [5]. Alternat-
ively, workflow management systems (WFMS) can be
used to automate such multi-step analyses. Workflows
(WFs) created using such WFMS are aimed to automate

and documentmulti-step analyses. WFs are instrumental
in assuring reproducibility of analyses and are generally
used in two different ways [4]. First, they are used for
routine analyses, allowing the reuse of the analysis
pipeline [4]. Second, WFs are employed for more explor-
atory analyses where the visual programming capacities
of WFMS are leveraged [4]. Many WFMS exist and are in
use in bioinformatics such as Taverna [6], Galaxy [7],
KNIME [8], CLC Genomics Workbench, Pegasus [9],
Conveyor [10], and many more. In general, a WF trans-
forms input data via various interconnected processing
steps (often referred to as nodes) into output data. The
FAIR guiding principles describe the sharing of data, al-
gorithms, and WFs in an attempt to improve research
reproducibility and transparency [11]. Data, computation-
al tools, and WFs should, therefore, be FAIR: findable,
accessible, interoperable, and reusable [11]. Much has
been done for FAIR data such as Dataverse [12], Open-
PHACTS [13], and Zenodo (http://zenodo.org/). For WF
sharing, the common workflow language (CWL) [14],
SHIWA [15], and the common tool descriptor [16] are
examples with the aim of making WFs interoperable and
reusable among WFMS. Together with WF repositories
such as MyExperiment [17], the FAIR guidelines for data
can thus be emulated for WFs, at least in theory.
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A small list of WFMS was selected for comparison based
on their status of commercialization and use within the
bioinformatics community. Another criterion was that
they needed to provide a graphical user interface (GUI)
with WF visualization facility so that they can be used to
communicate the data analysis among stakeholders.
The availability of a GUI also simplifies the application
and development of WFs by the non-specialist. The three
selected WFMS are Galaxy, free and open-source,
KNIME, partially free and partially open source with added
commercial products, and CLC, commercial and closed
source. KNIMEwas developed at the Konstanz University
and released in the mid-2000s. It allows users to create
WFs via a GUI with strong visual programming capabilities
[8]. Several packages and extensions have been pro-
duced to create bioinformatics WFs in KNIME, such as
SeqAn [18] and KNIME4NGS [19]. Galaxy is a server ap-
plication that was first released in 2005 to enable biolo-
gists to perform computational analysis using a web inter-
face [7]. The application was designed to increase access
to computational analysis, allow the creation of auto-
mated multi-step analyses, and provide transparent
analyses [7]. Galaxy offers the platform as a software
package as well as a public server containing many tools
that can be used [7]. CLC Genomics Workbench allows
researchers to construct and perform various multi-step
NGS data analyses, and its main aim is user-friendliness.
CLC Genomics Workbench is offered as a standalone
program for a workstation, and its functionality can be
enhanced in organizations with CLC Genomics Server.
CLC provides its own implementations of bioinformatics
tools, although other tools can be integrated.
We believe these three WFMS give a succinct represen-
tation of the large amount ofWFMS available, and judging
by their amount of mentions in title and abstracts of
manuscripts listed in PubMed, they are also quite popular.
In order to compare theWFMS, we chose a common task
in bioinformatics: RNA-seq analysis. Among other differ-
ences, we investigated WF creation, tool availability, and
WF flexibility from a user perspective. Different types of
RNA-seq analysis are possible, and as a practical ex-
ample, four different WFs for each WFMS for the identi-
fication of differentially expressed (DE) genes were con-
structed following the general analysis steps described
in Conesa et al. [2]. While we had an interest in creating
WFs for the analysis of alternative splicing, this was not
possible with all three WFMS tools without implementing
new nodes, which is beyond the perspective we take here.
KNIME is missing processing nodes for that type of anal-
ysis, but it can be overcome with implementing custom
nodes, as we showed in a study involving altORF identifi-
cation [20]. Apart from this particular problem, other
challenges in the field are that for each WFMS the avail-
ability of analysis tools differs and that even if the same
tool is available, the versions might vary. Therefore, it is
impossible to create the exact same WFs in multiple
WFMS out of the box. We identified this as one of the
major challenges for cross-WFMS reproducibility. To still
create the exact same WFs in different WFMS, the tools

need to be added to the various WFMS, which can be
quite challenging and is beyond what a casual user of
WFs can be expected to do. Our main aim was to provide
a recommendation of which WFMS tool to use for RNA-
seq analysis. However, it was possible to develop RNA-
seqWFs with all threeWFMS. Therefore, a general recom-
mendation was hard to provide, and potential users
should consider the limitations and challenges that were
determined for each of these tools in this study. We out-
line these limitations and the challenges we faced in the
results section and provide decision support for a number
of use cases in the conclusion. Additionally, we created
a list of criteria to take into consideration when newly
embarking on an RNA-seq endevour and looking for a
WFMS. These criteria are in no particular order and have
no weights attached to them so that the reader can
evaluate them in light of their existing expertise. Finally,
we demonstrate that variations among the WFs lead to
differing results from the same input data. In the worst
case this may lead to contrasting biological interpreta-
tions. Often divergent results can be attributed to differ-
ences in algorithm of the employed tools, but if some
tools are commercial black boxes, interpretation becomes
difficult. Thus, we hope that from the WFs we developed
in threeWFMS andwhich we share on GitHub [21], others
can develop them further to reach a consensus for RNA-
seq data analysis.

Materials and methods

Test data

Test data provided with a test WF from the KNIME4NGS
package [22] was used in all three WFMS. The data con-
sisted of eight paired-read datasets (forward and reverse
reads in separate files), the chromosome 16 reference
sequence, and a GTF annotation file (https://github.com/
MatthieuBeukers/RNA-seqFlow/blob/master/testdata/
Homo_sapiens.GRCh37.75.chr16.gtf). All data were from
the human genome build GRCh37. A design table to be
used in the differential expression analysis was also
provided (see https://github.com/MatthieuBeukers/RNA-
seqFlow/blob/master/testdata/dea_design_table.tsv).
Additionally, a reference transcriptome consisting of all
cDNA sequences for the human build GRCh37.75 was
downloaded from the Ensembl website (see https://
github.com/MatthieuBeukers/RNA-seqFlow/blob/master/
testdata/chr16_reference_transcriptome.fa). This data
was filtered to retain only chromosome 16 cDNA se-
quences. FASTA definition lines were modified to keep
only the transcript identifiers. The downloaded cDNA
data were subsequently used to create a transcript
to gene translation table (see https://github.com/
MatthieuBeukers/RNA-seqFlow/blob/master/testdata/
chr16_t2gene.csv). We performed a quality check of the
RNA-seq files using FASTQC. All data were of high quality,
and none of the files needed to be discarded due to
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Figure 1: General RNA-Seq WF design.
WFs implemented in this work follow the general design based on the ‘classical’ RNA-seq pipeline

described by Conesa et al. [2].

low quality (https://github.com/MatthieuBeukers/RNA-
seqFlow/blob/master/testdata/QualityOVerview.pdf).

Workflow management systems

KNIME 3.4.2 + with all free extensions (32bit) was in-
stalled in a 32bit Ubuntu (Ubuntu Mate 16.04) virtual
machine running on Windows 7 Enterprise (64bit) in Vir-
tualbox 5. Required programs and dependencies for the
KNIME4NGS package were built from source (see Attach-
ment 1).
Galaxy 18.01 was installed from an archive on a local
cluster server and run once for configuration. Only one
admin account was created after installation. All other
settings were kept at their defaults.
CLC Genomics Workbench 11 was installed on a Win-
dows 7 (64bit). A CLC license was obtained from the local
CLC Server.
With this setup, we also stress tested the support of older
operating systems with the selected WFMS. Please note
that all three WFMS support modern operating systems.

Workflow creation

Four different WFs were created in each WFMS. Two WFs
were aimed at performing differential gene expression
analysis (DEA) from read mappings to the transcriptome
or genome, respectively. The other two WFs were aimed
at mapping many datasets against either the genome or
transcriptome, respectively, to test parallelization. Fig-
ure 1 displays the general design for RNA-seq analysis,
which was implemented in the selected WFMS environ-
ments.

Results

Factors considered for WFMS
recommendation

All three WFMS were tested on a single computer as a
single user. Potential difficulties and strengths with mul-

tiple users and behavior in a cluster with multiple ma-
chines were, therefore, not assessed. Furthermore, capa-
bilities and problems with parallelization, which can be
of great importance in big data analysis, were not tested.
Another aspect that was ignored is automatedWF testing.
Proper testing of WFs, whether connected tools work and
obtained results are correct, is a vital aspect in WFs, as
noted by Piras et al. [23]. They correctly suggest WFs
should be tested rigorously like any software application
and created the wft4galaxy application for testing Galaxy
WFs [23]. KNIME, as well, offers several nodes to test
WFs. In CLC, no specific tools were found for WF testing.
Many factors were compiled to support the recommenda-
tion for which WFMS to use under which conditions.
Factors included are, for example, the availability of
bioinformatics tools, options for WF branching, and
managing input/output. Table 1 shows a selection of
these factors, and Attachment 2 contains all (65) factors.
Attachment 2 records all of the challenges we en-
countered while creating the RNA-seq WFs for this work
and presents questions that need to be asked prior to
creatingWFswith theWFMS, such as whether the desired
tools are available (Table 1, rows 2 and 3). Therefore,
many of these questions could not be applied to this study
since we chose the WFMS before compiling the list and
we focus on the items that presented the largest problems
during creation of the WFs.

Workflow readability and flexibility

Regardless of the platform employed in this study, small
WFs are easy to read and understand. However, with in-
creasing complexity, WFs become more challenging to
read in Galaxy and CLC. KNIME offersmeta nodes, encap-
sulating smaller WFs, which improves readability. Galaxy
can also create sub-WFs. However, there are a few
caveats with them, such as that the tool settings cannot
be changed globally. CLC has no option to encapsulate
and reuse sub-WFs, and the WFs become harder to read
with an increasing number of tools, inputs, and outputs
(Figure 2). Readability decreases because each tool dis-
plays all possible in- and outputs. Larger versions of the
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Table 1: Factors considered during WMS comparison.
Factors are coloured using a traffic light system with green generally indicating ‘good’

(for the full version refer to Attachment 2).

image in Figure 2 and figures for the other WFMS can be
found in the GitHub repository [21] in the sections for the
individual WFMS. In summary, KNIME WFs support com-
plex WFs more intuitively, while it can be challenging to
work with larger WFs in the other two platforms.
Visual WFs can be instrumental for discussion among
stakeholders, and the better they are presented, the less
work is necessary to develop additional representations
such as UML diagrams. KNIME excels in this task
(Figure 3).
Galaxy WFs can be run from the command line/console,
and KNIME WFs can be run headlessly in a similar man-
ner. Galaxy also offers an API, thereby creating flexible
interfacing with the WFMS.
Unique to KNIME is WF branching with if and switch
nodes enabling the control of WF execution at runtime.
Branching can be of interest when data-dependent
choices need to bemade in aWF (e.g. which readmapper
(or read mapper settings) to use could be decided from
the input data). While WF branching is not available in
Galaxy and CLC, the former has been planning to add this
option.

Input and output

In KNIME input can be set by configuring various file or
database nodes, by usingWF variables, and quick forms.
Similarly, Galaxy offers data selection from history before
executing a WF. This option makes deploying a WF easier
as there is a clear distinction between the actions and
input of the WF. CLC offers two options for setting input
when a WF is opened in the editor. Input can be set by
configuring input nodes or before running the WF. In-
stalled WFs limit users to select input available in the
workbench.

In KNIME, there are special nodes that configure serializa-
tion to files or databases. For the RNA-seq analysis, third
party nodes had to be used, which did not always adhere
to this separation of concerns and saving of output and
thus depended on these nodes. Some of these nodes
write output in the same folder where the input data is
located, while others allow users to select the output
location during configuration. Galaxy and CLC enable
users to select where to save the output. CLC also offers
the option to only display the results instead of saving
them. A challenge with the development of the WFs in
this study was that tools integrated into the WFMS by
third parties needed comprehensive testing. Such tools
often did not adhere to the design philosophies of the
WFMS.

Tools and parameters

KNIME offers tools for most RNA-seq analysis steps ex-
cept for transcriptome assembly, transcriptome read
mapping quantification, and isoform discovery (this pre-
vented alternative splicing analysis). Nodes that are not
part of core packages can be obtained from the com-
munity nodes by adding additional software and by writing
scripts. Galaxy offers tools for every step in the RNA-seq
analysis, but they first need to be installed by a Galaxy
administrator. Many tools are available in multiple ver-
sions, allowing WFs to depend on a particular one. CLC
Genomics Workbench offers its own tools for many RNA-
seq analysis steps, but other tools could be added, which
was, however, not a focus of this study. We were not able
to find clear descriptions of the algorithms used by CLC.
Not providing such specifications is a pity since other
commercial tools such as Matlab provide algorithms for
the functionality they provide in their help section.
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Figure 2: KNIME transcriptome DEA WF.
KNIME WF for the analysis of transcriptomics data to derive DE between two conditions based on read data

mapped against a transcriptome. Processing nodes are placed in a loop structure to process data sets
individually and to allow the automatic processing of arbitrary amounts of read files.
Larger figures are available in our GitHub repository [21] in the knime directory.

All tools in the three WFMS offer a variety of parameters
to configure the algorithm. However, not all parameters
that the standalone tool offers are always reflected in the
nodes of the WFMS. Galaxy WFs need to be edited to
change tool parameters. Galaxy also allows tool parame-
ters to be changed via the API or when rerunning a spe-
cific WF step. CLC also allows parameters of tools to be

changed when running the WF. Parameter learning in
WFs might be interesting to allow for automatic optimiza-
tion, but at present, this is only possible using KNIME.
Themajor challenge in this section is that tools integrated
into the WFMS by third parties may not make available
all tool options or evenmisname them (the latter was not
observed for RNA-seq analysis).
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Figure 3: Galaxy transcriptome DEA WF.
Galaxy WF that performs DEA between two conditions based on read data mapped against a transcriptome.
Each condition has its own, but conceptually identical, path to process data sets, resolving at the DEA step.

Larger figures are available in our GitHub repository [21] in the galaxy directory.
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Result visualization

KNIME does not offer many specific nodes for the visual-
ization of genomic data, although IGV [24] was used
within KNIME in at least one study [25]. In general, plot-
ting nodes could be used to visualize, for example, the
results of the differential expression analysis. The R [26]
integration in KNIME allows interaction with R. For ex-
ample, plotting can be achieved or the integration of
scripts from CRAN. R includes a wide variety of bioinfor-
matics tools, but adding scripts (especially encapsulated
ones) reduces WF comprehensibility and compromises
reproducibility. Galaxy and CLC both offer many visualiza-
tion options ranging from viewing plain text files and re-
ports to plotting and inspecting genome mappings via
genome browsers.

Workflow sharing

Each WFMS allows users to share, import, and export
WFs. Imported WFs provide warning messages if tools
aremissing or the versions differ. KNIME and CLC require
their server applications to share WFs, whereas Galaxy
users can select with which other users to share their
WF. KNIME and Galaxy WFs can also be exported and
imported using the WFMS. Projects like SHIWA [15] and
CWL [14] aim tomakeWFs shareable amongWFMS. CLC
and KNIME do not have CWL support, but projects like
KNIME2gUse [16] allow KNIME WFs to be executed by
gUse [27]. Galaxy has CWL support in the alpha stage
and is likely to continue the development and implemen-
tation of the proposed format. Galaxy WFs can, further-
more, be shared with different platforms through projects
like Tavaxy [28], Closha [29], and Galaxy2gUse [16]. An
alternative approach to sharing WFs is to encapsulate
them into containers such as Docker or virtual machine
images. While this can be useful, it does not touch on the
reproducibility of WFs among WFMS.

Workflow: Differential expression for
transcriptome mapping

In each WFMS, several RNA-seq WFs were implemented
while comparing them. One of these WFs is discussed in
more detail below as an example to demonstrate differ-
ences between eachWFMS in a specific WF case. TheWF
performs differential expression analysis (DEA) between
two conditions withmultiple replicates from readmapping
to the transcriptome. The greatest challenge was that the
same RNA-seq analysis tools were not available in the
three platforms, whichmay lead to differing results among
WFs.

KNIME workflow

The WF (Figure 3) has been designed to allow for two or
more replicates and multiple conditions. To process
paired data sets individually, trimming, quality control
(QC) before and after, mapping, and quantification were

placed into a loop structure. Finally, count tables are
combined, filtered, and used in differential expression
analysis with a design table. Only samtools [30] idxstats
was available for transcriptome readmapping quantifica-
tion but could not be used, as the required bam index
(.bai) file could not be created using any available KNIME
node. A Java Snippet node, calling several samtools
commands (view, sort, index, and idxstats), was, there-
fore, developed to quantify read mapping. Alternatively,
the External Tool node could have been used to call, for
example, Kallisto [31], but this type of manipulation did
not fit the aim of this study. Also, there were no nodes
available to combine count tables. Therefore, an R script
node was used to perform this task. The challenges were
missing nodes, which forced us to develop scripts, thereby
reducing the comprehensibility and reproducibility of the
WF – furthermore adding the possibility to introduce er-
rors.

Galaxy workflow

The Galaxy WF (Figure 4) consists of two paths, one path
per replicate, with each path performing trimming and
clipping, including QC before and after, mapping and
quantification for one condition. Replicate data for each
path was saved as a dataset collection in the History in-
stead of as separate datasets. The differential expression
tool then joins the two paths. Tool parameters were kept
at default values. One factor, called ‘condition’, with
‘control’ and ‘treated’ as the two levels, was used for DEA.
Initially, Sickle [32] was used for trimming but was later
replaced with Trimmomatic [33] since Sickle did not
support processing of dataset collections. As a side note,
some tools may require R packages to be installed (e.g.
DESeq2 [34]). The first approach to theWFwas the usage
of a sub-WF performing QC, trimming, mapping, and
quantification. This sub-WF was used four times, and
each sub-WFwas connected to the DESeq2 tool. As noted
before, sub-WFs did not forward the output to the connec-
ted tools and thus could not be used, which makes the
overall WFs look a bit convoluted (Figure 4). This compli-
cation and the absence of loops makes scaling to more
complex WFs a challenge.

CLC workflow

The WF design (Figure 2) consists of four paths, each
performing trimming and clipping with QC before and
after, mapping and quantification for paired datasets. At
the differential expression step these paths are joined.
Most tool parameters were kept at their default value.
During trimming, the option to remove reads deemed too
short or long was set to default values. The type of DEA
was set to ‘group against group’. Two designs made
earlier, meant to be run in batch mode, could not be
successfully implemented. The first aimed to make the
WF similar to the one implemented in KNIME. The other
aimed to make the WF similar to that implemented in
Galaxy. Both implementations failed at the DEA step since
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Figure 4: CLC transcriptome DEA WF.
CLC WF performing DEA between two conditions with two replicates. Four identical paths each

process one data. The paths are joined during the DEA step. Blue boxes represent output, not tools.
Larger figures are available in our GitHub repository [21] in the clcbio directory.

the differential expression tool cannot be run in batch
mode. Creating more complex WFs may be a challenge
hard to overcome as the WFs would become visually
convoluted (Figure 2).

Discussion

Transcript quantification

The threeWFs were run using the same data so that their
results should, in theory, be comparable (Figure 5).
However, different tools were used for the analysis be-
cause the same tools were not available on all platforms.
For example, CLC has only its own implementations, and
adding custom nodes to CLC, KNIME, or Galaxy was be-
yond the scope of this study. However, this can be done
by experts for a given WFMS so the expertise of the user
is another important factor. For KNIME and Galaxy, it

would potentially have been possible to use the same
tools, but the tool versions were not clear for KNIME and
some of the tools could not be connected to other nodes
in one of the platforms. Therefore, different tools had to
be used to construct the RNA-seq data analysis WFs. We
show the results below without claim to any biological
significance.
Instead, we intend to highlight that small differences
amongWFs lead to varying results. Furthermore, the data
is not annotated with a ground truth, which makes it im-
possible to judge the success of the WFs. We believed it
is essential to quantify the difference and, therefore, we
tried to compare the results with the intent of making the
reader aware of the consequences of choosing one WF
over another. Our strategies for filtering the count data
were based on the count distribution per WF. Filtering
can be performed using count cutoffs, and to make the
results comparable, the cutoffs were determined from
the count distributions (Table 2). Applying no filtering re-
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Figure 5: Venn diagram of shared and unique transcripts among WFMS.
Results shown are filtered at the 75th percentile (for Venn diagrams at other cutoffs see Figure S4 in Attachment 1).

Galaxy and CLC share most transcripts with at least one other WFMS while KNIME has many unique transcripts at this cutoff.

Table 2: Shared and unique transcripts per WMS.
Each row indicates results after applying filtering choosing different cutoffs.

Cutoff values were decided based on the count data distribution (see Attachment 1).

veals that all tools share all identified transcripts,
whereas applying stringent filtering at the 90th percentile
shows that only a few shared results remain among the
different approaches (Table 2). The Venn diagram in Fig-
ure 5 shows the identified transcript distribution for filter-
ing at the 75th percentile. The majority of the results are
shared among at least two tools (~62%). The diagram
corresponds to row five in Table 2. Venn diagrams for the
other percentiles are available in Figure S4 in
Attachment 1. Some of the results, such as zero values
for no filter applied in Table 2, may not be intuitive at first
glance. They result from the fact that all transcripts are
shared among all tools, which leaves individual parts and
intersections between any two tools empty. With progress-
ive filtering, the transcripts may be differentially filtered
for different WFs leading to largely different distributions
with occasional increases for shares between tools.
KNIME and Galaxy more consistently share transcripts
that CLC did not identify. This higher similarity in results

can be attributed to the usage of open source tools in
Galaxy andKNIME. Open-source toolsmay be testedmore
openly, and algorithmsmay converge, whereas the black-
box approach in CLC prevents such discussions.
Interestingly, when filtering at the 90th percentile, CLC
retains more results than KNIME or Galaxy. No biological
question was analyzed in this study, and no follow-up
experimental analysis was planned. For such studies, it
is, however, essential to choose a cutoff, which reduces
the number of results to make them accessible in the
wet-lab. The question is then which WF to use in which
WFMS. We hope that sharing our WFs will spark discus-
sion and testing so that best practices can be established
in the future.
The greatest challenge is to develop the same WFs in all
WFMS. Implementing a particularWF following some best
practices holds the same challenge, and the availability
of tools and their versions must be investigated before
implementation. Another challenge is the difference in
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results found in this proof of principle. Here, we merely
want to make the reader aware that when creating WFs
with different tools (whichmay be unavoidable), different
results entail, which may, in the worst case, lead to con-
tradicting biological explanations. The filtering of the re-
sults does not alleviate the challenge, and it is prerogative
to scrutinize results in the wet lab. In the future, a com-
prehensive evaluation of RNA-seq analysis tools would
be beneficial.

Other workflows

Apart from theWFs discussed in detail above, three other
WFs have been constructed in each WFMS. These WFs
follow the same steps as the WF described above and
differ in the tools used at specific steps such as read
mapping. One of the threeWFs (named ‘wf_genmap_dea’)
first maps and quantifies multiple paired read datasets
for two conditions against a reference genome and sub-
sequently performs DEA. Implementing this WF in Galaxy
and CLC posed some minor challenges. In Galaxy, the
FASTA definition line present in the count files had to be
removedmanually before DEA. In CLC, the same approach
as for DEA from transcriptome mapping had to be imple-
mented. The other two WFs are ‘wf_genmap_multi’ and
‘wf_trmap_multi’ map and quantify many paired read
datasets against either a reference genome or transcrip-
tome.

Conclusions
RNA-seq analysis is a common task in data-driven biology
and medicine. Our research concerned the development
and comparison of RNA-seq WFs in KNIME, Galaxy, and
CLC Genomics Workbench. In summary, we find that
Galaxy can best be used for the development of RNA-seq
WFs. This belief is due to several factors: 1) many bioin-
formatics tools and their versions are available, 2) Galaxy
allows the sharing of WFs most seamlessly, for example,
between Galaxy instances, CWL support, Tavaxy, Closha,
and Galaxy2gUse, and 3) because the Galaxy API allows
a lot of flexibility and possibilities for the use of the WFs.
CLC Genomics Workbench, however, might be the best
solution for exploratory data analysis. This suggestion is
mainly due to its user-friendly interface, focus on bioin-
formatics and its strong visualization facilities. These two
aspects allow researchers to quickly perform their primary
analysis in a streamlined and consistent environment.
KNIME supported the scalability of analysis best due to
the implemented loop structure. However, it was not se-
lected for a recommendation for RNA-seq WF analysis
since it is currently missing tools, and scripting nodes
had to be used to circumvent the problem. Additionally,
some of the available nodes had idiosyncratic approaches
to file handling. However, unlike Galaxy and CLC, KNIME
was not designed for bioinformatics analyses. KNIME’s
design philosophy allows nodes from different fields to
be connected easily. Therefore, KNIME can be of great

use for machine learning and data integration tasks in
bioinformatics, for which it offers many nodes and func-
tionalities. Also note that the development of new nodes
in KNIME is not very involved, and themissing tools could
be added.
One factor for the recommendations above that we can-
not factor in is the familiarity of a user with any of the
WFMS. The expertise of a research group with oneWFMS
should be weighed against our recommendation above.
Another caveat is that by preselecting the three WFMS
we could establish criteria thatmay be important to select
WFMS but were not able to use them. Therefore, the
suggestions above are not based on a scoring system
(Attachment 2) but are based on the major challenges
we experiencedwhile developing the criteria and theWFs.
In conclusion, it was not possible to develop the exact
sameWFs in the three systems using the same computa-
tional tools. This problemmakes cross-WF reproducibility
a formidable challenge. Resulting differences in DEA for
the same data show that the underlying tools in theWFMS
need a comprehensive evaluation and comparison in the
future. End-users need to become aware that performing
RNA-seq analysis with a pipeline presents a choice that
produces results that may differ or even contrast biologi-
cal interpretation when compared to results from a slightly
different analysis pipeline. In conclusion, while we were
able to give a recommendation of which WFMS to use for
RNA-seq analysis, we raised the question of how the
pipeline should be constructed. The latter question needs
to be answered via a comprehensive analysis of RNA-seq
analysis tools and their impact on the results. We hope
that making our WF available will be a step in that direc-
tion.

Notes
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