
Sensitivity of influenza virus to ultraviolet irradiation

Empfindlichkeit von Influenzaviren gegenüber ultravioletter Bestrahlung

Abstract
Background: The measures implemented against the coronavirus
pandemic also led to a sharp decline in influenza infections in the
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2020/2021 flu season. In the meantime, however, the number of influ-
Ben Sicks1enza infections has risen again; it is known from history that influenza
Nicole Fehler1viruses can also trigger severe pandemics. Therefore, we investigated

the efficacy of ultraviolet radiation in the spectral range of 200–400 nm
for inactivating influenza viruses.
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Materials and methods: The scientific literature was searched for pub-
lished ultraviolet (UV) irradiation experiments with influenza viruses and 1 Institute of Medical

Engineering andthe results were standardized by determining the lg-reduction dose.
Mechatronics, Ulm UniversityThe results were then sorted and analyzed by virus type and wavelength

as far as possible. of Applied Sciences, Ulm,
GermanyResults: The scope of the published data sets was limited and revealed

large variations with regard to the lg-reduction dose. Only for experiments
with influenza viruses in liquid media in the UVC spectral range around
260 nm – the emission range of commonly-used mercury vapor lamps
– was there sufficient data to compare virus types. No significant differ-
ence between the virus (sub-) types was observed. The lg-reduction
dose in this spectral range is 1.75 mJ/cm2 (median). It was also shown
that influenza viruses are particularly sensitive in the far-UVC spectral
range (200–230 nm).
Conclusion: UVC, including far-UVC, is suited for influenza virus inacti-
vation as long as the viruses are in UVC-transparent materials. A large
difference in the UV sensitivity of different influenza viruses from the
last approx. 100 years could not be detected. Thus, it is reasonable to
assume that future influenza viruses will also be similarly UV-sensitive
or that UV can also inactivate new influenza viruses.
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Zusammenfassung
Hintergrund: Die gegen die Coronavirus-Pandemie durchgeführten
Maßnahmen haben in der Saison 2020/2021 auch zu einem starken
Rückgang von Grippeinfektionen geführt. Mittlerweile ist die Zahl der
Grippeinfektionen aber wieder angestiegen und aus der Historie ist
bekannt, dass auch Grippeviren Auslöser schwerer Pandemien sein
können. In der vorliegenden Arbeit soll daher untersucht werden wie
wirksam ultraviolette Strahlung im Spektralbereich 200–400 nm zur
Inaktivierung von Grippeviren ist.
Material undMethoden: In der wissenschaftlichen Literatur wurde nach
UV-Experimentenmit Grippeviren gesucht und die Resultate vereinheit-
licht, indem die lg-Reduktionsdosis bestimmt wurde. Die Ergebnisse
wurden, soweit möglich, nach Virus-Typ und Wellenlänge analysiert.
Ergebnisse: Der Umfang der publizierten Datensätze ist begrenzt und
weist im Hinblick auf die Reduktionsdosis große Variationen auf. Nur
für Experimente mit Grippeviren in flüssigen Medien im UVC-Spektral-
bereich um 260 nm, in dem auch weit verbreitete Quecksilberdampf-
lampen emittieren, finden sich ausreichend viele Daten, um die Emp-
findlichkeit unterschiedlicher Virus-Typen zu vergleichen. Ein signifikan-
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ter Unterschied zwischen den Virus- (Sub-) Typen ist nicht zu erkennen.
Die Reduktionsdosis in diesem Spektralbereich liegt bei 1,75 mJ/cm2

(Median). Es zeigt sich außerdem, dass Grippeviren im Far-UVC-Spek-
tralbereich (200–230 nm) besonders empfindlich sind.
Schlussfolgerung: UVC, inklusive Far-UVC, ist prinzipiell zur Inaktivierung
von Grippeviren geeignet, solange sich die Viren in UVC-transparenten
Materialien befinden. Ein Unterschied in der UV-Empfindlichkeit verschie-
dener Grippeviren aus den letzten ca. 100 Jahren ist nicht erkennbar.
Das gibt Grund zu der Annahme, dass auch zukünftige Grippeviren
ähnlich UV-empfindlich sein werden bzw. dass UV-Strahlung auch neue
Grippeviren inaktivieren kann.

Schlüsselwörter: Grippevirus, Virustyp, Desinfektion, Inaktivierung,
ultraviolett, UVA, UVB, UVC, Far-UVC

Introduction
Prior to 2019, 290,000 to 650,000 people died each
year worldwide as a result of influenza infections [1]. With
the emergence of the coronavirus pandemic, this number
has decreased significantly. The use of personal protec-
tive equipment, reduction of social contacts and other
factors are assumed to be the cause [2]. In the influenza
season 2021/2022, however, the number of influenza
infections rose significantly again and already seems to
have reached the level of earlier years [3].
Influenza is caused by enveloped, single-stranded RNA
viruses from the Orthomyxoviridae family [4], [5]. Influ-
enza viruses are often more or less spherical with diam-
eters between 80 and 120 nm [4]. Among other things,
the various genera differ in the number of their RNA
segments. Influenza viruses of type A or B contain 8 RNA
segments, and types C and D 7 segments. Of particular
medical importance are types A and B, which cause sea-
sonal flu in varying proportions. For example, during the
last influenza season in 2021/2022, 93.5% of the influ-
enza viruses identified were type A and 6.5% were influ-
enza B [3].
The greatest threat with regard to a pandemic probably
comes from influenza A viruses. Historically, this is sup-
ported by the fact that all influenza pandemics of the last
100 years were triggered by influenza A viruses. For ex-
ample, the pathogen that caused the Spanish flu of 1918,
which is said to have claimed 50million lives or more [6],
[7], was an influenza A virus of the subtype H1N1. In the
Asian flu pandemic of 1957 and the Hong Kong flu pan-
demic of 1968, the influenza A viruses were H2N2 and
H3N2 [8]. H1 through H18 and N1 through N11 are dif-
ferent viral hemagglutinin and neuraminidase surface
proteins that the virus needs to infect the host cell and
to multiply.
From a biological point of view, there are also reasons why
influenza A viruses pose a particular danger. The genome
is not stable, but evolves constantly through antigenic
drift and antigenic shift, making immune defense more
difficult. This genetic variability also allows them to jump
across species boundaries. Waterfowl are considered to
be the natural reservoir of influenza A viruses. These in-
fluenza viruses can either cause infections in humans

directly or via intermediate hosts, such as pigs. For ex-
ample, it is suspected that the Spanish flu of 1918 was
also transmitted from pigs to humans [8].
Potter expects influenza pandemics every 10–40 years
[9], but there is no “fixed schedule”. Theoretically, for in-
stance, an influenza A virus from thementioned influenza
reservoir of waterfowl can also lead to an infection in hu-
mans at any time. If this is a new influenza A virus, for
which there is still no immunity in the population, it can
develop into a pandemic.
Similar to the coronavirus pandemic, measures will then
be necessary to help inactivate the virus or contain its
spread. The disinfection techniques known so far, such
as chemical disinfectants, thermal disinfection or ultravi-
olet (UV) radiation, will probably also help against a pos-
sible new flu virus.
This literature review is about the application of ultraviolet
radiation especially at the emission wavelength of con-
ventional mercury vapor lamps. Of particular interest is
also the far-UVC range (200–230 nm), which promises
a strong antimicrobial and virucidal effect with low risk
to humans [10], [11], [12], [13]. The intention is to
provide estimates for the lg-reduction doses for future
influenza viruses. For this purpose, previously available
UV disinfection data for already known influenza viruses
will be examined for their UV sensitivity – given as lg-re-
duction doses – in different media in order to reveal
similarities and differences.

Materials and methods
Pubmed and Google Scholar were searched for various
combinations of the following terms: “influenza”, “flu”,
“disinfection”, “inactivation”, “reduction”, “radiation”,
“irradiation”, “UV”, “ultraviolet”, “UVC”, “UV-C”, “UVB”,
“UV-B”, “UVA” and “UV-A”. The references in the literature
found were examined to see if they could be included in
the study. We also checked whether the retrieved studies
were cited by other relevant literature. The data collected
was not limited to human influenza viruses; information
on animal influenza viruses was also evaluated.
The paramount property investigated in this study was
the sensitivity of the viruses to UV radiation, expressed
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as the lg-reduction dose needed for a 90% virus inactiva-
tion. If this information was not explicitly given in the text
or in tables, an attempt was made to determine the lg-
reduction dose from graphs. These lg-reduction doses
were calculated under the assumption of exponential
behavior, as observed by several authors [14], [15], [16],
[17], [18], [19], [20], [21].
It is known that the entire UV spectral range has an anti-
microbial effect, but also that large differences of more
than a factor of 1,000 can exist between different UV
sub-ranges. Therefore, the results found were grouped
according to wavelength ranges: [200–230 nm] (far-UVC),
[231–250nm],[251–270nm],[271–290nm],[291–315nm],
and [316–400 nm].
In this way, the different results for the different viruses
do not scatter excessively based on the different wave-
lengths, and in the range of maximum RNA absorption
around 260 nm, greater amounts of data can be com-
pared directly to each other. However, due to different ex-
perimental setups and biological variations, there is still
some scattering evenwithin these intervals, and therefore
the main result per interval is the median, which is less
sensitive to outliers compared to the average.

Results
A total of 39 publications on influenza virus inactivation
with UV radiation were retrieved. Some of them over 50
years old and contain less precise virus designations than
is common today. For example, articles older than 50
years often refer to “the Mel strain” or “the WSN strain”.
Searches of other older and more recent sources, partic-
ularly the Influenza Research Data Base (https://
www.fludb.org/brc/home.spg?decorator=influenza),
suggest that these strains are likely H1N1 A/Mel-
bourne/35 and H1N1 A/WSN/33. However, assignment
to current designations has not been successful for all
influenza virus strains.
Several studies were not quantitatively evaluable, be-
cause irradiation intensity and dose weremissing or given
in units such as energy per volume, which is not convert-
ible to energy per area without additional information.
The irradiation wavelength was also absent several times.
If no specific UV wavelength was named by the authors,
a low-pressuremercury vapor lamp with a peak emission
at 254 nm was assumed, as these have served as the
standard antimicrobial UV radiation sources for decades.
Most retrieved results are given in Table 1, which lists
virus (sub-) type, irradiationwavelength, lg-reduction dose,
and sample medium. Exceptions were made for publica-
tions on UV irradiation of FFP (filtering facepiece) materi-
als or masks. In such cases, only mean values from each
publication were listed and not all published individual
results for each filter, as these results depend predomi-
nantly on (unknown) UV absorption properties of the filter
materials and the number of their layers. This only allows
very limited conclusions to be drawn about inactivation
properties of influenza viruses.

Most experiments in Table 1 were performed in liquid
virus suspensions. Only 5 reports on virus irradiation in
aerosol could be retrieved, and only for three of them
was a quantification of the lg-reduction dose given or
possible to be determined. In addition, three results of
virus irradiation on surfaces and 5 studies on (FFP) filter
materials were available.
Since mercury vapor lamps with their emission peak at
254 nm have been applied for decades, most published
experiments were also conducted at this wavelength or
in the spectral range from 251 to 270 nm. The summa-
rized values for all influenza viruses together in this
spectral range depending on the sample medium are
presented in Table 2. There is no significant difference
between lg-reduction doses for influenza viruses in liquids
and aerosols (p>0.05), but a large difference compared
to surface and FFP results.

Table 2: Median dosages, 25%, and 75%quartiles (Q1 and Q3)
for reduction of all influenza viruses by 1 lg according to sample
medium (liquid, aerosol, surface, and FFP material) in the UV

range 251–270 nm

To find out whether different influenza (sub-) types exhibit
different UV sensitivities, (sub-) types with at least three
determined doses in liquids and in the spectral range
251–270 nm were grouped and analyzed. H5N1 and
H5N2 subtypes had to be merged to obtain three doses.
No influenza B virus was included, as there is only a single
dose.
The median doses for reduction of influenza A virus sub-
types H1N1, H3N2, H5N1/H5N2 and all influenza viruses
by 1 lg are given in Table 3. ANOVA revealed that the
doses for these subtypes in liquids are not significantly
different from each other (p>0.05).

Table 3: Median dosage, 25%, and 75% quartile (Q1 and Q3)
for reduction of different influenza A virus subtypes by 1 lg in

liquids in the UV range 251–270 nm

The wavelength dependence of the dose for all influenza
viruses in liquids is summarized in Table 4. In the most
important spectral range around 260 nm, the median
dose is 1.75 mJ/cm2 and in the far-UVC range it is
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Table 1: Published ultraviolet irradiation experiments on influenza viruses and determined dosages for 1 lg-reduction
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(Continued)
Table 1: Published ultraviolet irradiation experiments on influenza viruses and determined dosages for 1 lg-reduction
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Table 4: Median dosage, 25%, and 75% quartile (Q1 and Q3) for reduction of all influenza viruses by 1 lg in liquids for different
UV intervals

0.48 mJ/cm2. For longer UV wavelengths, the doses in-
crease by several orders of magnitude.

Discussion
The number of quantitative UV photoinactivation publica-
tions is rather small, given the importance of influenza
and the number of different virus types and subtypes.
For example, there is only one evaluable result for one
influenza B strain, and it was published 40 years ago.
Nevertheless, UV radiation turns out to be antivirally active
against all influenza viruses; large differences in sensitiv-
ity between the different virus types or subtypes are not
evident. The necessary lg-reduction for the influenza B
strain at 254 nm is somewhat lower than for the median
for the influenza A viruses. However, asmentioned above,
it is based on a single result and still within the range of
the influenza A results. This is not surprising, as the RNA
strand lengths of about 13.4 and 14.4 kb [22] for influ-
enza A and B subtypes, respectively, are UVC targets of
similar size.
The UV dose for reduction by 1 lg in the most important
spectral range of 251–270 nm, which includes emission
from conventional germicidal mercury vapor lamps, is
1.75 mJ/cm2 (median). This dose is comparable to the
analogous value for coronavirus, which is also a single-
stranded enveloped RNA virus [23]. Surprisingly, the
spectral response in Table 4 does not match RNA absorp-
tion, as observed by other authors in experiments with
different wavelengths in the same setup [16], [18], [24],
[25]. It would have been expected that UVC radiation
would be most effective around 260 nm and that the ef-
fect would initially decrease somewhat around 240 nm
but increase again in the far-UVC around 222 nm. The
reason for the observed deviationmay be the low number
of individual results for the short wavelength intervals,
with relatively high statistical scattering. On the other
hand, the increased dose with an approximately 10,000-
fold increase in wavelength of UVA radiation was to be
expected.
However, it is necessary for UV radiation to actually reach
the viruses. Viruses in or behind UV-absorbing materials
may not be inactivated or may be inactivated poorly.
These properties of UV radiation are sometimes mis-
judged, when even scientists assume that UVC radiation
passes through normal glass, for instance. One should
not be deceived by “UV-transparent” designations of
plastics and glasses. These may be transparent to UVA

radiation (315–400 nm), but usually not to UVC
(200–280 nm). The only UVC transparent glassmaterial is
fused silica, and even in this case, significant absorption
may occur, especially in the far-UVC range (200–230 nm).
Also, a possible source of error, falsely leading to higher
lg-reduction data, is the use of absorbing culture media,
such as DMEM. Virus solutions often consist of viruses
in such culture media diluted in salt solutions; but even
diluted, media absorption can attenuate UVC radiation.
This is especially true below 240 nm, when protein ab-
sorption increases sharply, and it is also true for virus
solutions that appear completely transparent to the hu-
man eye.
A similar problem ensues upon irradiation of virus
samples in micro-titer plates with many small wells. In
wells that are not directly under the UVC radiation source,
the well walls shadow part of the wells’ contents, thus
reducing disinfection effectiveness. Shadows and absorp-
tion may both lead to deviations from mono-exponential
virus reduction.
Conversely, effects also occur that can lead to an erro-
neously low reduction dose. For example, when metallic
sample vessels are used, and part of the radiation is re-
flected and passes through the sample a second time.
The extent to which the data determined in Table 1 (for
liquids) depend on non-optimal experimental conditions,
or are biological variations, is difficult to establish retro-
spectively. In general, however, the required UV irradiation
doses for influenza viruses in liquids and aerosols are
very low.
It should be emphasized that one lg-reduction dose only
leads to 90% virus inactivation and virucidal measures
officially require at least 99.99% (4 lg-level) reduction
[26], [27]. With the assumption of exponential inactivation
behavior, this leads to an assumed 4-fold higher neces-
sary irradiation dose of 7 mJ/cm2. With typical recom-
mendations such as 40 mJ/cm2 UVC from the drinking
water sector [28], influenza virus reduction by many or-
ders of magnitude is possible.
However, the situation on surfaces and in materials such
as FFP filters is more difficult. With surfaces, although
the reflectivity of the material plays a role, the porosity
exerts a greater influence, since deeper pores in particular
can provide shade and shield the virus from the radiation.
The statements on FFP filters in Table 1 seem relatively
consistent, but this is due to the fact that although the
relevant studies were conducted with different materials
from different manufacturers, only the average disinfec-
tion success rates are presented here. In the studies
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themselves, major unknown differences in detail exist
between the products of the different manufacturers and
each additional UV-absorbing filter layer, which can sub-
stantially influence the disinfection effect. The above-
mentioned drinking water standard of 40 mJ/cm2 would
have to be increased by more than one order of mag-
nitude in this case.
UVB and UVA radiation also exhibit antiviral properties,
but the effect is many orders of magnitude weaker than
for UVC. Under realistic irradiation conditions, UVB and
UVA would require irradiation durations of hours or days
to achieve a reduction by several lg-levels.

Conclusion
UVC, including far-UVC, is suitable for the inactivation of
influenza viruses in UVC-transparent liquids and aerosols.
Since only very small irradiation doses are required for
90% inactivation, reductions of several orders of mag-
nitude can be achieved within seconds or minutes.
The differences in UV sensitivity of influenza viruses that
have emerged over the last 100 years are rather small.
UVC radiation has been applied as an antimicrobial
measure for more than 100 years, but no concomitant
change in the UV sensitivity of influenza viruses has been
observed. Therefore, our expectation is that possible fu-
ture influenza viruses will be similarly UV sensitive or that
UVC radiation will be an effective measure against new
influenza viruses.
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